Первые понятия о микроскопе формируются в школе на уроках биологии. Там дети узнают на практике, что с помощью этого оптического прибора можно рассматривать маленькие объекты, которые невозможно увидеть невооруженным глазом. Микроскоп, строение его интересуют многих школьников. Продолжением этих интересных уроков для кого-то из них становится вся дальнейшая взрослая жизнь. При выборе некоторых профессий необходимо знать строение микроскопа, так как он является основным инструментом в работе.

Строение микроскопа

Устройство оптических приборов соответствует законам оптики. Строение микроскопа основывается на его составных частях. Узлы прибора в виде тубуса, окуляра, объектива, стойки, столика для расположения предмета исследования, осветителя с конденсором имеют определенное назначение.

Стойка удерживает на себе тубус с окуляром, объективом. К стойке прикреплен предметный столик с осветителем и конденсором. Осветитель - это встроенная лампа или зеркальце, служащее для освещения исследуемого объекта. Изображение получается более ярким у осветителя с электрической лампой. Назначение конденсора в этой системе заключается в регулировании освещенности, фокусировании лучей на изучаемом предмете. Известно строение микроскопов без конденсоров, в них устанавливается одиночная линза. В практической работе удобнее пользоваться оптикой с подвижным столиком.

Строение микроскопа, его конструкция непосредственно зависят от предназначения этого прибора. Для научных исследований используется рентгеновское и электронное оптическое оборудование, имеющее более сложное устройство, чем световые приборы.

Строение светового микроскопа отличается простотой. Это самые доступные оптические приборы, они наиболее широко применяются в практике. Окуляр в виде двух увеличительных стекол, помещенных в оправу, и объектив, который также состоит из увеличительных стекол, заправленных в оправу, - вот главные узлы светового микроскопа. Весь этот набор вставлен в тубус и прикреплен к штативу, в который вмонтирован и предметный столик с расположенным под ним зеркалом, а также осветитель с конденсором.

Главным принципом работы светового микроскопа является увеличение изображения размещенного на предметном столике объекта исследования посредством прохождения через него лучей света с дальнейшим попаданием их на систему линз объектива. Такую же роль выполняют линзы окуляра, которыми пользуется исследователь в процессе изучения объекта.

Нужно отметить, что световые микроскопы тоже не одинаковы. Разница между ними определяется количеством оптических блоков. Различаются монокулярные, бинокулярные или стереомикроскопы с одним или двумя оптическими блоками.

Несмотря на то, что эти оптические приборы используются уже многие годы, они остаются невероятно востребованными. С каждым годом они совершенствуются, становятся точнее. Еще не сказано последнее слово в истории таких полезных приборов, как микроскопы.

Светлопольная микроскопия

Изучение невидимых невооруженным глазом клеток микроорганизмов, размеры которых не превышают десятков и сотен микрометров (1 мкм = 0,001 мм), возможно только при помощи микроскопов (от греч. mikros - малый, skopeo - смотрю). Эти приборы позволяют получать в сотни раз (световые микроскопы) и в десятки-сотни тысяч раз (электронные микроскопы) увеличенное изображение исследуемых объектов.

При помощи микроскопа изучают морфологию клеток микроорганизмов, их рост и развитие, проводят первичную идентификацию (от лат. idenificare - отождествление) исследуемых организмов, ведут наблюдения за характером развития микробных ценозов (сообществ) в почве и других субстратах.

Микроскоп состоит из двух частей: механической (подсобной) и оптической (главной).

Механическая часть микроскопа. К ней относят штатив, предметный столик и тубус (трубу).

Штатив имеет основание в виде подковы и колонку (тубусодержатель) в форме дуги. К нему примыкают коробка механизмов, система зубчатых колес для регуляции положения тубуса. Система приводится в движение вращением макрометрического и микрометрического винтов.

Микрометрический винт (кремальера, зубчатка, макровинт) служит для предварительной ориентировочной установки изображения рассматриваемого объекта.

Микрометрический винт (микровинт) используют для последующей четкой установки на фокус. При полном повороте микровинта труба передвигается на 0,1 мм (100 мкм).

При вращении винтов по часовой стрелке труба опускается по направлению к препарату, при вращении против часовой стрелки - поднимается от препарата.

Предметный столик служит для размещения на нем препарата с объектом исследования. Предметный столик вращается и перемещается во взаимно перпендикулярных плоскостях с помощью винтов. В центре столика находится круглое отверстие для освещения препарата снизу лучами света, направляемыми зеркалом микроскопа. В столик вмонтированы два зажима (клеммы) - пружинящие металлические пластинки, предназначенные для закрепления препарата.

Если необходимо исследовать поверхность препарата, не допуская пропусков (что важно при подсчете), или же если во время работы требуется повторное исследование какого-либо определенного участка на препарате, на предметный столик помешают препаратоводитель. На нем имеется система линеек - нониусов, с помощью которых можно присвоить координаты любой точке исследуемого объекта. Для этого при установке препаратоводителя следует совместить центр вращения столика и оптическую ось системы микроскопа с центрировочной пластинкой препаратоводителя (отсюда предметный столик с препаратоводителем называют иногда крестообразным).



Тубус (труба) - оправа, в которую заключены элементы оптической системы микроскопа. К нижней части тубуса прикрепляется револьвер (объективодержатель) с гнездами для объективов. Современные модели микроскопов имеют наклонный тубус с дугообразным тубусодержателем, что обеспечивает горизонтальное положение предметного столика.

Оптическая часть микроскопа состоит из основного оптического узла (объектив и окуляр) и вспомогательной осветительной системы (зеркало и конденсор). Все части оптической системы строго центрированы относительно друг друга. Во многих современных микроскопах зеркало и конденсор заменены вмонтированным в прибор регулируемым источником света.

Осветительная система находится под предметным столиком. Зеркало отражает падающийна него свет в конденсор. Одна сторона зеркала плоская, другая - вогнутая.При работес конденсором необходимо пользоватьсятолько плоским зеркалом. Вогнутое зеркало применяют при работе безконденсора с объективами малых увеличений. Конденсор (oт лат. condenso - уплотняю, сгущаю), состоящий из 2-3 короткофокусныхлинз, собирает лучи, идущие от зеркала, и направляетих на объект. Конденсор необходим, прежде всего, при работес иммерсионной системой. Линзы конденсора вмонтированы в металлическую оправу, соединенную с зубчатым механизмом, позволяющим перемещать конденсор вверх и вниз специальным винтом. Для регулировки интенсивности освещения в конденсоре есть ирисовая (лепестковая) диафрагма, состоящая из стальных серповидных пластинок

Окрашенные препараты лучше рассматриватьпри почтиполностью открытой диафрагме, неокрашенные - при уменьшенном отверстии диафрагмы.

Под конденсором располагается кольцевидный держатель для светофильтров (обычно к микроскопу прилагаются синееи белое матовые стекла). При работе с искусственным источникомсвета светофильтры создают впечатление дневного освещения, что делает микроскопирование менее утомительнымдля глаз.

Объектив (от лат. objectum - предмет) - наиболее важнаячасть микроскопа. Это многолинзовая короткофокуснаясистема, от качества которой зависит в основном изображениеобъекта. Наружная линза, обращеннаяплоской сторонойк препарату, называется фронтальной. Именно она обеспечивает увеличение. Остальные линзы в системе объектива выполняют преимущественно функции коррекции оптических недостатков, возникающих при исследовании объектов.

Один из таких недостатков - явление сферическойаберрации. Оно связано со свойством линз неравномернопреломлять периферические и центральныелучи. Первые обычно преломляются в большей степени, чем вторые, ипоэтому пересекаются на более близком расстоянии к линзе.В результате изображение точки приобретаетвид расплывчатогопятна.

Хроматическая аберрация возникаетпри прохождении через линзу пучка лучей с различной длиной волны. Преломляясь по-разному, лучи пересекаются не в одной точке. Сине-фиолетовые лучи с короткой длиной волны преломляются сильнее, чем красные с большей длиной волны. Вследствие этого у бесцветного объекта появляется окраска.

К объективам, устраняющим сферическую и частично хроматическую аберрацию, относятся ахроматы. Они содержат до 6 линз и корригируют первичный спектр (желто-зеленую часть спектра), не устраняя вторичного спектра. Изображение, получаемое с помощью ахроматов, не окрашено, но края его имеют красный пли синеватый ореол. В современных ахроматах этот недостаток практически неуловим. Лучший материал для линз ахроматов - флинтгласы - старые сорта стекли с высоким содержанием окиси свинца.

Объективы, устраняющие хроматическую аберрцию и для вторичного спектра, называют апохроматами. В их составе может быть oт 1 до 12 линз. Линзы апохроматов для лучшей коррекции вторичного спектра делают из плавикового шпата, каменной соли, квасцов и других материалов. Апохро-маты дают возможность устранить окрашивание объекта и получить одинаково резкое изображение от лучей разного цвета. Максимального эффекта при работе с апохроматами можно достичь только при их сочетании с компенсационными окулярами, возмещающими оптические недостатки объективов. В компенсационных окулярах хроматическая ошибка противо положна хроматической ошибке объектива, и в результате хроматическая аберрация микроскопа оказывается почти полностью компенсированной.

Планахроматы - paзновидность апохроматов, имеющих плоское полe зрения. Объективы-планахроматы полностью устраняют искривление поля зрения, обуславливающее неравномерность фокусировки объекта (при кривизне поля зрения фокусируется только часть поля). Планахроматы и планапохроматы используют при микрофотографии.

Объективы бывают сухие и погружные (иммерсионные). При работе с сухими объективами между фронтальной линзой объектива и объектом исследования находится воздух. Оптический расчет иммерсионных объективов предусматривает их работу при погружении фронтальной линзы объектива в жидкую однородную среду. При работе с сухим объективом вследствие разницы между показателями преломления стекла (1,52) и воздуха (1,0) часть световых лучей отклоняется и не попадает в глаз наблюдателя (рис. 1).

При работе с иммерсионным объективом необходимо поместить между покровным стеклом и линзами объектива кедровое

масло, показатель преломления которого близок к показателю преломления стекла (табл. 1).

Лучи в оптически однородной гомогенной среде не меняют своего направления. Иммерсионные объективы на оправе имеют черную круговую нарезку и обозначения: I - immersion (иммерсия), HI - homogen immersion (однородная иммерсия), OI - oil immersion, МИ - масляная иммерсия. Объективы различают по их увеличению.

Собственное увеличение объектива (V) определяют по формуле

где l - оптическая длина тубуса или расстояние между фокальной плоскостью объектива и плоскостью изображения, составляющее для разных объективов 128-180 мм; f - фокусное расстояние объектива: чем оно больше, тем меньше увеличение объектива.

Величина увеличения объективов обозначена на их оправе (8х, 40х, 9х). Каждый объектив характеризуется, кроме того, определенной величиной рабочего расстояния в миллиметрах.

У объективов с малым увеличением расстояние от фронтальной линзы объектива до препарата больше, чем у объективов с большим увеличением. Так, объективы с увеличением 8 х, 40 х и 90 х имеют соответственно рабочие расстояния 13,8; 0,6 и 0,12 мм. В зависимости от того, с каким объективом работаешь, для его фокусировки выбирается макрометрический и микрометрический винт. Иммерсионный объектив имеет рабочее расстояние до объектива 0,12 мм, поэтому его нередко называют «близоруким».


1 Кедровое масло получают из семян виргинского можжевельника Juniperus virginiana или зеравшанской арчи Juniperus seravschana. В настоящее время в качестве иммерсионной жидкости чаще применяют синтетические продукты, соответствующие по оптическим свойствам кедровому маслу.

Микроскоп (от греч. mikros - малый и skopeo - рассматриваю) - это оптический прибор, предназначенный для зрительного исследования мелких объектов, невидимых невооруженным глазом. В микробиологии применяют самые разнообразные микроскопы, имеющие различную конструкцию и приспособления, но схожие между собою в своих основных элементах.

Рис. 33. Устройство микроскопа

1 - штатив; 2 - тубус; 3 - головка; 4 - предметный столик; 5 - макровинт; 6 - микровинт;

7 - конденсор; 8 - осветительное устройство; 9 - объектив; 10 - окуляр.

Микроскоп состоит из двух основных частей: механической и оптической (рис. 33). Механическая часть микроскопа включает штатив (1), который состоит из массивного основания и тубусодержателя.

В верхней части тубусодержателя крепится монокулярный или бинокулярный тубус (2) и головка с направляющей типа «ласточкин хвост» (3). На эту направляющую помещают револьвер. Револьвер имеет четыре отверстия с резьбой для ввинчивания объективов и фиксатор для их центрирования. Сферическая часть револьвера вращается на шариках (для быстрой смены объектива) и оснащена шариковым фиксатором.

В средней части тубусодержателя расположен предметный столик (4), который имеет клеммы для фиксирования предметного стекла и боковые винты для продольного и поперечного перемещения. Это значительно облегчает работу с препаратом и позволяет рассматривать объект в различных его точках. В центре предметного столика имеется отверстие для прохождения света. Некоторые исследовательские микроскопы снабжены дополнительными микровинами для микроперемещения объекта.

Тубусодержатель в нижней части несет направляющую с большими ручками (5) грубой фокусировки микроскопа (макрометрический винт или кремальера) и малыми ручками (6) или диском для точной фокусировки микроскопа (микрометрический винт). Вращая кремальеру, производят грубое, видимое глазом, вертикальное перемещение предметного столика или тубуса. С помощью микрометрического винта перемещают предметный столик или тубус вверх - вниз на очень незначительное расстояние, заметное лишь при микроскопировании. Один оборот микрометрического винта дает перемещение на 0,1 мм. Этого достаточно для точной фокусировки объекта. Во избежание поломки микрометрического винта не следует делать им более 1-1,5 оборота.

Оптическая часть микроскопа включает осветительную систему и систему линз.

Осветительная система расположена под предметным столиком и состоит из конденсора (7) и осветительного устройства (8). Конденсор является важнейшей частью микроскопа, от которой зависит успех микробиологических исследований. Он предназначен для собирания рассеянных световых лучей, которые, проходя через линзы конденсора, собираются в фокусе на плоскости рассматриваемого препарата.

Конденсор фиксируется кольцом в оправе, расположенной на кронштейне, и удерживается небольшим болтом. Кроме того, име­ется специальный боковой винт, позволяющий передвигать конден­сор вверх - вниз на 20 мм для изменения освещенности поля зрения. В нижней части конденсора имеется ирисовая диафрагма. Отверстие диафрагмы регулируется специальным рычагом, что дает возможность изменять яркость освещения объекта. В нижней части конденсора располагается подвижная рамка (оправа), в которую помещают светофильтры из матового или синего стекла. Светофильтры служат для ослабления степени освещенности и улучшения четкости изображения.

Световые лучи направляются в конденсор с помощью зеркала или специального электрического осветительного устройства, которое у различных микроскопов имеет свои конструкционные особенности.

Важнейшей частью микроскопа является также система линз, которая создает увеличенное обратное и мнимое изображение объекта. Она состоит из объектива (9), расположенного в нижней части тубуса и направленного на исследуемый объект, и окуляра (10), помещенного в верхней части тубуса.

Объектив представляет собой металлический цилиндр, в ко­тором закреплены линзы. Главная (фронтальная) линза направлена к препарату. Лишь она обеспечивает необходимое увеличение изображаемого объекта, все остальные коррегируют изображение и называются коррекционными. От фронтальной линзы зависит разрешающая способность микроскопа, т.е. наименьшее расстояние, при котором две близко расположенные точки различают отдельно. В современных оптических микроскопах разрешающая способность объективов составляет 0,2 мкм. Чем больше кривизна фронтальной линзы, тем больше степень ее увеличения.

Однако фронтальная линза вызывает и отрицательные, мешающие исследованию, явления, основными из которых является сферическая абберация и хроматическая абберация.

Сферическая абберация связана с тем, что боковые лучи, падающие на края фронтальной линзы, преломляются сильнее остальных и делают изображение объекта расплывчатым, нечетким. Поэтому каждая точка объекта имеет вид кружочка. Для исправле­ния недостатков фронтальной линзы в объективах - ахроматах имеется система коррекционных линз (от 3-4 до 10-12).

Являясь наиболее простыми, ахроматы страдают хроматической абберацией. Хроматическая абберация обусловлена разложением луча белого света, проходящего через фронтальную линзу, на составные части спектра. Изображение объекта получается как бы окруженное радугой. Наиболее сильно стеклянные линзы преломляют сине-фиолетовые лучи и меньше всего - красные.

Устранение сферической и хроматической абберации наиболее полно достигается при использовании апохроматов. Они состо­ят из совокупности линз, имеющих различную кривизну и изготовленных из разных сортов стекла. Это создает условия обеспечения четкости изображения и для более правильной передачи окраски цветных объектов.

В первое время использовались ахроматы, которые позволя­ли устранять хроматическую абберацию в отношении двух наиболее ярких цветов спектра. Поэтому изображение объекта было лишено окраски. В дальнейшем были получены особые сорта стекла, линзы из которых устраняли не только окрашивание объекта., но и давали четкое изображение от лучей разного цвета. Такие объективы получили название апохроматы.

Панахроматы имеют еще более сложную конструкцию и позволяют создавать более четкие контуры объектов во всем поле зрения

Для выбора объективов на их корпусе гравируют обозначения: ахр. - ахромат, апо. - апохромат; пан. - панхромат

Различают объективы сухие и иммерсионные. При использовании сухого объектива между его фронтальной линзой и рассматриваемым объектом находится прослойка воздуха. Световые лучи из воздуха проходят через стекло препарата, затем снова через воздушную прослойку, в результате чего преломляются и рассеи­ваются на границе разнородных сред. После таких переходов через разнородные среды только часть световых лучей проникает в объектив. Чтобы уловить максимальное количество световых лучей, фронтальная линза объективов должна иметь сравнительно большой диаметр, большое фокусное расстояние и малую кривизну. Поэтому сухие объективы имеют небольшую степень увеличения (8 х, 10 х, 20 х, 40 х).

Для достижения большего увеличения необходимо создать однородную оптическую среду между фронтальной линзой объек­тива и препаратом. Это становится возможным при погружении объектива в каплю кедрового масла, которую наносят на препарат. Кедровое масло обладает коэффициентом преломления n = 1,515, близким к коэффициенту преломления стекла препарата (п = 1,52). Поэтому световые лучи, проходящие через иммерсионное масло, не рассеиваются и, не меняя своего направления, попадают в объек­тив, обеспечивая четкую видимость исследуемого объекта. При отсутствии кедрового масла используют заменители: персико­вое масло (n = 1,49); касторовое масло (1,48-1,49); гвоздичное масло (1,53); иммерсиол, в состав которого входят персиковое мас­ло (50 г), канифоль{10 г), нафталин (10 г), салол (1 г); смесь равных объемов касторового (n = 1,47) и укропного (n - 1,52) масел.

Объективы масляной иммерсии имеют маркировку «МИ» черную полосу на цилиндре и утопающую фронтальную линзу, что предохраняет ее от повреждения в случае неосторожного соприкосновения объектива с препаратом. Степень увеличения изобра­жения у масляных иммерсионных объективов может быть 80 х,90 х,95 х,100 х и120 х.

Объективы водной иммерсии имеют степень увеличения изоб­ражения 40Х. Они маркируются буквами «ВИ» и белой полосой на цилиндре. Такие объективы очень чувствительны к изменению толщины покровного стекла, так как коэффициент преломления воды отличается от коэффициента преломления стекла. Наилучшее качество изображения наблюдается при использовании покровных стекол толщиной 0,17 мм.

Большинство микроскопов снабжено тремя типами объективов (10 х, 20 х, 40 х и 90 х), обеспечивающих соответственно малое, среднее и большое увеличение. Наименьшая кратность увеличе­ния объектива - 8 х. При длительной обработке объектива ацетоном или бензином с целью удаления иммерсионного масла, клей, соединяющий линзы, разрушается. Это приводит в негодность оп­тическую систему объектива.

Окуляр находится в верхней части тубуса и увеличивает изображение, данное объективом. Он состоит из двух плоско-выгнутых линз: верхней линзы (глазной) и нижней, обращенной к объекту, собирающей линзы. Глаз исследователя, как бы продолжая оптическую систему микроскопа, преломляет лучи, вышедшие из окуляра и строит увеличенное изображение объекта на сетчатке.

Обе линзы заключены в металлическую оправу. На оправе окуляров гравируется цифра, показывающая, во сколько раз окуляр повышает увеличение объектива. В монокулярном микроскопе используют один объектив, а в бинокулярном микроскопе - два. Соответственно, изображение объекта получается плоским или стереоскопическим. Бинокулярный тубус можно настроить на любые межзрачковые расстояния в диапазоне от 55 до 75 см.

Кратность увеличения окуляра обозначена на металлической оправе глазной линзы (7 х, 10 х или 15 х). Общее увеличение микроскопа равно произведению коэффициента увеличения объектива и коэффициента увеличения окуляра. Таким образом, наименьшее увеличение биологических микроскопов – 56 раз (8 - увеличение объектива, умноженное на 7 – увеличение окуляра), а наибольшее - 1800 (120х15).

Однако увеличенное изображение объекта может четким и нечетким. Четкость изображения определяется разрешающей способностью микроскопа (полезным увеличением) т.е. минимальным расстоянием между двумя точками, когда они еще не сливаются в одну. Чем больше разрешающая способность микроскопа, тем меньший объект можно увидеть.

Показатель разрешающей способности микроскопа зависит от длины волны используемого света и суммы числовых апертур объектива и конденсора:

где α - минимальное расстояние между двумя точками;

А 1 - числовая апертура объектива;

А 2 - числовая апертура конденсора;

λ - длина волны используемого света.

Числовые апертуры объектива и конденсора указаны на их корпусе. Повысить разрешающую способность микроскопа можно, ис­пользуя ультрафиолетовое облучение. Однако ультрафиолетовые микроскопы очень дорогие, что затрудняет их использование. Чаще всего для повышения разрешающей способности микроскопа при­меняют иммерсионную систему.

Конструкция микроскопа непосредственно зависит от его назначения. Как Вы уже, наверное, догадались, микроскопы бывают разные, и оптический микроскоп будет значительно отличаться от электронного или рентгеновского. В данной статье будет подробно разбираться строение оптического светового микроскопа , который на данный момент является наиболее популярным выбором любителей и профессионалов, и с помощью которого можно решить множество исследовательских задач.

Оптические микроскопы также имеют свою классификацию и могут различаться по своему строению. Тем не менее, существует основной набор деталей, которые входят в устройство любого оптического микроскопа. Давайте рассмотрим каждую из этих деталей.

В микроскопе можно выделить оптическую и механическую части. Оптика микроскопа включает в себя объективы, окуляры, а также осветительную систему. Штатив, тубус, предметный столик, крепления конденсора и светофильтров, механизмы для регулировки предметного столика и тубусодержателя составляют механическую часть микроскопа.

Начнем, пожалуй, с оптической части .

  • Окуляр . Та часть оптической системы, которая непосредственно связана с глазами наблюдателя. В простейшем случае объектив состоит из одной линзы. Иногда для большего удобства, или, как принято говорить, "эргономичности", объектив может быть снабжен, например, "наглазником" из резины либо мягкого пластика. В стереоскопических (бинокулярных) микроскопах имеется два окуляра.
  • Объектив . Едва ли не самая важная часть микроскопа, обеспечивающая основное увеличение. Основной параметр - аппертура, о том, что это такое, подробно рассказано в разделе "Основные параметры микроскопов". Объективы делятся на "сухие" и "иммерсионные", ахроматические и апохроматические, и даже в дешевых простых микроскопах представляют собой довольно сложную систему линз. Некоторые микроскопы имеют унифицированные элементы крепления объективов, что позволяет комплектовать прибор в соответствии с задачами и бюджетом потребителя.
  • Осветитель . Очень часто используется обыкновенное зеркало, позволяющее направлять на исследуемый образец дневной свет. В настоящее время часто применяют специальные галогенные лампы, имеющие спектр, близкий к естественному белому свету и не вызывающие грубых искажений цвета.
  • Диафрагма . В основном в микроскопах применяют так называемые "ирисовые" диафрагмы, названные так потому, что содержат лепестки, подобные лепесткам цветка ириса. Сдвигая или раздвигая лепестки, можно плавно регулировать силу светового потока, поступающего не исследуемый образец.
  • Коллектор . С помощью коллектора, расположенного вблизи светового источника, создается световой поток, который заполняет апертуру конденсора.
  • Конденсор . Данный элемент, представляющий собой собирающую линзу, формирует световой конус, направленный на объект. Интенсивность освещения при этом регулируется диафрагмой. Чаще всего в микроскопах используется стандартный двухлинзовый конденсор Аббе.

Стоит отметить , что в оптическом микроскопе может быть использован один из двух основных способов освещения: освещение проходящего света и освещение отраженного света. В первом случае световой поток проходит через объект, в результате чего формируется изображение. Во втором - свет отражается от поверхности объекта.

Что касается оптической системы в целом, то в зависимости от ее строения принято выделять прямые микроскопы (объективы, насадка, окуляры располагаются над объектом), инвертированные микроскопы (вся оптическая система располагается под объектом), стереоскопические микроскопы (бинокулярные микроскопы, состоящие по сути из двух микроскопов, расположенных под углом друг к другу и формирующие объемное изображение).

Теперь перейдем к механической части микроскопа .

  • Тубус . Тубус представляет собой трубку, в которую заключается окуляр. Тубус должен быть достаточно прочным, не должен деформироваться, что ухудшит оптические свойства, потому только в самых дешевых моделях тубус делается из пластмассы, чаще же используются алюминий, нержавеющая сталь либо специальные сплавы. Для ликвидации "бликов" тубус внутри, как правило, покрывается черной светопоглощающей краской.
  • Основание . Обычно выполняется достаточно массивным, из металлического литья, для обеспечения устойчивости микроскопа во время работы. На данном основании крепится тубусодержатель, тубус, держатель конденсора, ручки фокусировки, револьверное устройство и насадка с окулярами.
  • Револьверная головка для быстрой смены объективов. Как правило, в дешевых моделях, имеющих всего один объектив, этот элемент отсутствует. Наличие револьверной головки позволяет оперативно регулировать увеличение, меняя объективы простым ее поворотом.
  • Предметный столик , на котором размещают исследуемые образцы. Это либо тонкие срезы на предметных стеклах - для микроскопов, работающих в "проходящем свете", либо объемные объекты для микроскопов "отраженного света".
  • Крепления , которыми предметные стекла фиксируются на предметном столике.
  • Винт грубой настройки фокусировки . Позволяет, изменяя расстояние от объектива до исследуемого образца, добиваться наиболее четкого изображения.
  • Винт точной фокусировки . То же самое, только с меньшим шагом и меньшим "ходом" резьбы для максимально точной регулировки.

Специальные виды микроскопии

Темнопольная. Используют специальный конденсор, выделяющий контрастирующие структуры неокрашенного материала. Темнопольная микроскопия позволяет наблюдать живые объекты. Наблюдаемый объект выглядит как освещенный на темном поле. При этом лучи от осветителя падают на объект сбоку, а в линзы микроскопа поступают только рассеянные лучи.

Фазово-контрастная микроскопия позволяет изучать живые и неокрашенные объекты. При прохождении света через окрашенные объекты изменяется амплитуда световой волны, а при прохождении света через неокрашенные – фаза световой волны, что и используют для получения высококонтрастного изображения в фазово-контрастной и интерференционной микроскопии.

Поляризационная микроскопия - формирование изображения неокрашенных анизотропных структур (например, коллагеновые волокна и миофибриллы).

Интерференционная микроскопия объединяет принципы фазово-контрастной и поляризационной микроскопии и применяется для получения контрастного изображения неокрашенных объектов.

Люминесцентная микроскопия применяется для наблюдения флюоресцирующих (люминесцирующих) объектов. В люминесцентном микроскопе свет от мощного источника проходит через два фильтра. Один фильтр задерживает свет перед образцом и пропускает свет длины волны, возбуждающей флюоресценцию образца. Другой фильтр пропускает свет длины волны, излучаемой флуоресцирующим объектом. Таким образом, флюоресцирующие объекты поглощают свет одной длины волны и излучают в другой области спектра.

Флюоресцирующие красители (флюоресцин, родамин и др.) избирательно связываются со специфическими макромолекулами.

Электронная микроскопия

Теоретическое разрешение просвечивающего ЭМ составляет 0,002 нм. Реальное разрешение современных микроскопов приближается к 0,1 нм. Для биологических объектов разрешение ЭМ на практике составляет 2 нм.

Просвечивающий ЭМ состоит из колонны, через которую в вакууме проходят электроны, излучаемые катодной нитью. Пучок электронов, фокусируемый кольцевыми магнитами, проходит через подготовленный образец. Характер рассеивания электронов зависит от плотности образца. Проходящие через образец электроны фокусируют, наблюдают на флюоресцирующем экране и регистрируют при помощи фотопластинки.

Сканирующий ЭМ применяют для получения трехмерного изображения поверхности исследуемого объекта.

Метод сколов ( замораживания-скалывания) применяют для изучения внутреннего строения клеточных мембран. Клетки замораживают при температуре жидкого азота в присутствии криопротектора и используют для изготовления сколов. Плоскости скола проходят через гидрофобную середину двойного слоя липидов. Обнаженную внутреннюю поверхность мембран оттеняют платиной, полученные реплики изучают в сканирующем электронном микроскопе.

2.Основные части светового микроскопа их назначение и устройство
Разрешающая способность микроскопа дает раздельное изображение двух близких друг другу линий. Невооруженный человеческий глаз имеет разрешающую способность около 1/10 мм или 100 мкм. Лучший световой микроскоп примерно в 500 раз улучшает возможность человеческого глаза, т. е. его разрешающая способность составляет около 0,2 мкм или 200 нм.

Разрешающая способность и увеличение не одно и тоже. Если с помощью светового микроскопа получить фотографии двух линий, расположенных на расстоянии менее 0,2 мкм, то, как бы не увеличивать изображение, линии будут сливаться в одну. Можно получить большое увеличение, но не улучшить его разрешение.

Различают полезное и бесполезное увеличения. Под полезным понимают такое увеличение наблюдаемого объекта, при котором можно выявить новые детали его строения. Бесполезное - это увеличение, при котором, увеличивая объект в сотни и более раз, нельзя обнаружить новых деталей строения. Например, если изображение, полученное с помощью микроскопа (полезное!), увеличить еще во много раз, спроецировав его на экран, то новые, более тонкие детали строения при этом не выявятся, а лишь соответственно увеличатся размеры имеющихся структур.

В учебных лабораториях обычно используют световые микроскопы, на которых микропрепараты рассматриваются с использованием естественного или искусственного света. Наиболее распространены световые биологические микроскопы: БИОЛАМ, МИКМЕД, МБР (микроскоп биологический рабочий), МБИ (микроскоп биологический исследовательский) и МБС (микроскоп биологический стереоскопический). Они дают увеличение в пределах от 56 до 1350 раз. Стереомикроскоп (МБС) обеспечивает подлинно объемное восприятие микрообъекта и увеличивает от 3,5 до 88 раз.

В микроскопе выделяют две системы: оптическую и механическую К оптической системе относят объективы, окуляры и осветительное устройство (конденсор с диафрагмой и светофильтром, зеркало или электроосветитель).

Механическая часть микроскопа.

основание (штатив) или массивная ножка (1);
коробка с микромеханизмом (2) и микровинтом (3);

податочный механизм для грубой наводки – макровинт или кремальера (8);
предметный столик (4);

винты (5, 6, 12, 13);

головка (9); револьвер (10); клеммы; тубус (11);

дуга или тубусодержвтель(7);
Кремальера (макровинт) – служит для приблизительной «грубой» установки на фо-

Механическая система микроскопа состоит из подставки, коробки с микрометренным механизмом и микрометренным винтом, тубуса, тубусодержателя, винта грубой наводки, кронштейна конденсора, винта перемещения конденсора, револьвера, предметного столика.

Подставка - это основание микроскопа.

Коробка с микрометренным механизмо м, построенном на принципе взаимодействующих шестерен, прикреплена к подставке неподвижно. Микрометренный винт служит для незначительного перемещения тубусодержателя, а, следовательно, и объектива на расстояния, измеряемые микрометрами. Полный оборот микрометренного винта передвигает тубусодержатель на 100 мкм, а поворот на одно деление опускает или поднимает тубусодержатель на 2 мкм. Во избежание порчи микрометренного механизма разрешается крутить микрометренный винт в одну сторону не более чем на половину оборота.

Тубус или трубка - цилиндр , в который сверху вставляют окуляры. Тубус подвижно соединен с головкой тубусодержателя, его фиксируют стопорным винтом в определенном положении. Ослабив стопорный винт, тубус можно снять.

Револьвер предназначен для быстрой смены объективов, которые ввинчиваются в его гнезда. Центрированное положение объектива обеспечивает защелка, расположенная внутри револьвера.

Винт грубой наводки используют для значительного перемещения тубусодержателя, а, следовательно, и объектива с целью фокусировки объекта при малом увеличении.

Предметный столик предназначен для расположения на нем препарата. В середине столика имеется круглое отверстие, в которое входит фронтальная линза конденсора. На столике имеются две пружинистые клеммы - зажимы, закрепляющие препарат.

Кронштейн конденсора подвижно присоединен к коробке микрометренного механизма. Его можно поднять или опустить при помощи винта, вращающего зубчатое колесо, входящее в пазы рейки с гребенчатой нарезкой.


Close