На рис. 2.9 представлена вольт-амперная характеристика кремниевого выпрямительного диода при различной температуре окружающей среды.

Максимально допустимые прямые токи кремниевых плоскостных диодов различных типов составляют 0,1…1600 А. Падение напряжения на диодах при этих токах обычно не превышает 1,5 В. С увеличением температуры прямое падение напряжения уменьшается, что связано с уменьшением высоты потенциального барьера

p–n -перехода и с перераспределением носителей заряда по энергетическим уровням.

Обратная ветвь вольт-амперной характеристики кремниевых диодов не имеет участка насыщения обратного тока, т.к. обратный ток в кремниевых диодах вызван процессом генерации носителей заряда в p–n -переходе. Пробой кремниевых диодов имеет лавинный характер. Поэтому пробивное напряжение с увеличением температуры увеличивается. Для некоторых типов кремниевых диодов при комнатной температуре пробивное напряжение может составлять 1500…2000 В.

Диапазон рабочих температур для кремниевых выпрямительных диодов ограничивается значениями – 60…+125 C . Нижний предел рабочих температур обусловлен различием температурных коэффициентов линейного расширения различных элементов конструкции диода: при низких температурах возникают механические напряжения, которые могут привести к растрескиванию кристалла. С уменьшением температуры также необходимо учитывать увеличение прямого падения напряжения на диоде, происходящее из-за увеличения высоты потенциального барьера на p–n -переходе.

Верхний предел диапазона рабочих температур выпрямительных диодов определяется резким ухудшением выпрямления в связи с ростом обратного тока – сказывается тепловая генерация носителей заряда в результате ионизации атомов полупроводника. Исходя из этого верхний предел диапазона рабочих температур кремниевых выпрямительных диодов, как и большинства других полупроводниковых приборов, связан с шириной запрещенной зоны исходного полупроводникового материала.

На рис. 2.10 представлена вольт-амперная характеристика германиевого выпрямительного диода при различной температуре окружающей среды.

Прямое напряжение на германиевом диоде при максимально допустимом прямом токе практически в два раза меньше, чем на кремниевом диоде. Это связано с меньшей высотой потенциального барьера германиевого перехода, что является достоинством, но, к сожалению, единственным.

Для германиевых диодов характерно существование обратного тока насыщения, что связано с механизмом образования обратного тока – процессом экстракции неосновных носителей заряда.

Плотность обратного тока в германиевых диодах значительно больше, т.к. при прочих равных условиях концентрация неосновных носителей заряда в германии на несколько порядков больше, чем в кремнии. Это приводит к тому, что для германиевых диодов пробой имеет тепловой характер. Поэтому пробивное напряжение с увеличением температуры уменьшается, а значения этого напряжения меньше пробивных напряжений кремниевых диодов.



Верхний предел диапазона рабочих температур германиевых диодов составляет около 75 C .

Существенной особенностью германиевых диодов и их недостатком является то, что они плохо выдерживают даже очень кратковременные импульсные перегрузки при обратном смещении p–n -перехода. Определяется это механизмом пробоя – тепловым пробоем, происходящим при шнуровании тока с выделением большой удельной мощности в месте пробоя.

Перечисленные особенности кремниевых и германиевых выпрямительных диодов связаны с различием ширины запрещенной зоны исходных полупроводников. Из такого сопоставления видно, что выпрямительные диоды с большей шириной запрещенной зоны обладают существенными преимуществами в свойствах и параметрах. Одним из таких представителей является арсенид галлия.

В настоящее время, выпускаемые промышленностью арсенид-галлиевые выпрямительные диоды еще далеки от оптимально возможных. К примеру, диод типа АД112А имеет максимально допустимый прямой ток 300 мА при прямом напряжении 3 В. Большая величина прямого напряжения является недостатком всех выпрямительных диодов, p–n -переходы которых сформированы в материале с широкой запрещенной зоной. Максимально допустимое обратное напряжение для данного диода –50 В. Это объясняется, вероятнее всего, тем, что в области p–n -перехода имеется большая концентрация дефектов из-за несовершенства технологии.

Достоинствами арсенид-галлиевых выпрямительных диодов являются большой диапазон рабочих температур и лучшие частотные свойства. Верхний предел рабочих температур для диодов АД112А составляет 250 С. Арсенид-галлиевые диоды АД110А могут работать в выпрямителях малой мощности до частоты 1 МГц, что обеспечивается малым временем жизни носителей заряда в этом материале.

Выводы:

1. С повышением температуры обратный ток у германиевых выпрямительных диодов резко возрастает за счет роста теплового тока.

2. У кремниевых диодов тепловой ток очень мал, и поэтому они могут работать при более высоких температурах и с меньшим обратным током, чем германиевые диоды.

3. Кремниевые диоды могут работать при значительно больших обратных напряжениях, чем германиевые диоды. Максимально допустимое постоянное обратное напряжение у кремниевых диодов увеличивается с повышением температуры до максимального значения, в то время как у германиевых диодов резко падает.

4. Вследствие указанных преимуществ в настоящее время выпрямительные диоды в основном изготавливают на основе кремния.



Вах-вах-вах… Обычно эти слова употребляют, рассказывая анекдоты про кавказцев))) Кавказцев прошу не обижаться – я уважаю Кавказ. Но, как говорится, из песни слов не выкинешь. Да и в нашем случае это слово имеет другой смысл. Да и не слово это даже, а аббревиатура.

ВАХ – это вольт амперная характеристика. Ну а нас в этом разделе интересует вольт амперная характеристика полупроводникового диода .

График ВАХ диода показан на рис. 6.

Рис. 6. ВАХ полупроводникового диода.

На графике изображены ВАХ для прямого и обратного включения диода. Ещё говорят, прямая и обратная ветвь вольт-амперной характеристики. Прямая ветвь (Iпр и Uпр) отображает характеристики диода при прямом включении (то есть когда на анод подаётся «плюс»). Обратная ветвь (Iобр и Uобр) отображает характеристики диода при обратном включении (то есть когда на анод подаётся «минус»).

На рис. 6 синяя толстая линия – это характеристика германиевого диода (Ge), а чёрная тонкая линия – характеристика кремниевого (Si) диода. На рисунке не указаны единицы измерения для осей тока и напряжения, так как они зависят от конкретной марки диода.

Что же мы видим на графике? Ну для начала определим, как и для любой плоской системы координат, четыре координатных угла (квадранта). Напомню, что первым считается квадрант, который находится справа вверху (то есть там, где у нас буквы Ge и Si). Далее квадранты отсчитываются против часовой стрелки.

Итак, II-й и IV-й квадранты у нас пустые. Это потому, что мы можем включить диод только двумя способами – в прямом или в обратном направлении. Невозможна ситуация, когда, например, через диод протекает обратный ток и одновременно он включен в прямом направлении, или, иными словами, невозможно на один вывод одновременно подать и «плюс» и «минус». Точнее, это возможно, но тогда это будет короткое замыкание))). Остаётся рассмотреть только два случая – прямое включение диода и обратное включение диода .

График прямого включения нарисован в первом квадранте. Отсюда видно, что чем больше напряжение, тем больше ток. Причём до какого-то момента напряжение растёт быстрее, чем ток. Но затем наступает перелом, и напряжение почти не меняется, а ток начинает расти. Для большинства диодов этот перелом наступает в диапазоне 0,5…1 В. Именно это напряжение, как говорят, «падает» на диоде. То есть если вы подключите лампочку по первой схеме на рис. 3, а напряжение батареи питания у вас будет 9 В, то на лампочку попадёт уже не 9 В, а 8,5 или даже 8 (зависит от типа диода). Эти 0,5…1 В и есть падение напряжения на диоде. Медленный рост тока до напряжения 0,5…1В означает, что на этом участке ток через диод практически не идёт даже в прямом направлении.

График обратного включения нарисован в третьем квадранте. Отсюда видно, что на значительном участке ток почти не изменяется, а затем увеличивается лавинообразно. Что это значит? Если вы включите лампочку по второй схеме на рис. 3, то светиться она не будет, потому что диод в обратном направлении ток не пропускает (точнее, пропускает, как видно на графике, но этот ток настолько мал, что лампа светиться не будет). Но диод не может сдерживать напряжение бесконечно. Если увеличить, напряжение, например, до нескольких сотен вольт, то это высокое напряжение «пробьёт» диод (см. перегиб на обратной ветви графика) и ток через диод будет течь. Вот только «пробой» - это процесс необратимый (для диодов). То есть такой «пробой» приведет к выгоранию диода и он либо вообще перестанет пропускать ток в любом направлении, либо наоборот – будет пропускать ток во всех направлениях.

В характеристиках конкретных диодов всегда указывается максимальное обратное напряжение – то есть напряжение, которое может выдержать диод без «пробоя» при включении в обратном направлении. Это нужно обязательно учитывать при разработке устройств, где применяются диоды.

Сравнивая характеристики кремниевого и германиевого диодов, можно сделать вывод, что в p-n-переходах кремниевого диода прямой и обратный токи меньше, чем в германиевом диоде (при одинаковых значениях напряжения на выводах). Это связано с тем, что у кремния больше ширина запрещённой зоны и для перехода электронов из валентной зоны в зону проводимости им необходимо сообщить большую дополнительную энергию.

Выпрямительный диод — это прибор проводящий ток только в одну сторону. В основе его конструкции один p-n переход и два вывода. Такой диод изменяет ток переменный на постоянный. Помимо этого, их повсеместно практикуют в электросхемах умножения напряжения, цепях, где отсутствуют жесткие требования к параметрам сигнала по времени и частоте.

  • Принцип работы
  • Основные параметры устройств
  • Выпрямительные схемы
  • Импульсные приборы
  • Импортные приборы

Принцип работы

Принцип работы этого устройства основывается на особенностях p-n перехода. Возле переходов двух полупроводников расположен слой, в котором отсутствуют носители заряда. Это запирающий слой. Его сопротивление велико.

При воздействии на слой определенного внешнего переменного напряжения, толщина его становится меньше, а впоследствии и вообще исчезнет. Возрастающий при этом ток называют прямым. Он проходит от анода к катоду. Если внешнее переменное напряжение будет иметь другую полярность, то запирающий слой будет больше, сопротивление возрастет.

Разновидности устройств, их обозначение

По конструкции различают приборы двух видов: точечные и плоскостные. В промышленности наиболее распространены кремниевые (обозначение - Si) и германиевые (обозначение - Ge). У первых рабочая температура выше. Преимущество вторых - малое падение напряжения при прямом токе.

Принцип обозначений диодов – это буквенно-цифровой код:

  • Первый элемент – обозначение материала из которого он выполнен;
  • Второй определяет подкласс;
  • Третий обозначает рабочие возможности;
  • Четвертый является порядковым номером разработки;
  • Пятый – обозначение разбраковки по параметрам.

Вольт-амперную характеристику (ВАХ) выпрямительного диода можно представить графически. Из графика видно, что ВАХ устройства нелинейная.

В начальном квадранте Вольт-амперной характеристики ее прямая ветвь отражает наибольшую проводимость устройства, когда к нему приложена прямая разность потенциалов. Обратная ветвь (третий квадрант) ВАХ отражает ситуацию низкой проводимости. Это происходит при обратной разности потенциалов.

Реальные Вольт-амперные характеристики подвластны температуре. С повышением температуры прямая разность потенциалов уменьшается.

Из графика Вольт-амперной характеристики следует, что при низкой проводимости ток через устройство не проходит. Однако при определенной величине обратного напряжения происходит лавинный пробой.

ВАХ кремниевых устройств отличается от германиевых. ВАХ приведены в зависимости от различных температур окружающей среды. Обратный ток кремниевых приборов намного меньше аналогичного параметра германиевых. Из графиков ВАХ следует, что она возрастает с увеличением температуры.

Важнейшим свойством является резкая асимметрия ВАХ. При прямом смещении – высокая проводимость, при обратном – низкая. Именно это свойство используется в выпрямительных приборах.

Анализируя приборные характеристики, следует отметить: учитываются такие величины, как коэффициент выпрямления, сопротивление, емкость устройства. Это дифференциальные параметры.

Он отражает качество выпрямителя.

Для экономии на платежах за электроэнергию наши читатели советуют "Экономитель энергии Electricity Saving Box". Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Его можно рассчитать: он будет равен отношению прямого тока прибора к обратному. Такой расчет приемлем для идеального устройства. Значение коэффициента выпрямления может достигать нескольких сотен тысяч. Чем он больше, тем лучше выпрямитель делает свою работу.

Основные параметры устройств

Какие же параметры характеризуют приборы? Основные параметры выпрямительных диодов:

  • Наибольшее значение среднего прямого тока;
  • Наибольшее допустимое значение обратного напряжения;
  • Максимально допустимая частота разности потенциалов при заданном прямом токе.

Исходя из максимального значения прямого тока, выпрямительные диоды разделяют на:

  • Приборы малой мощности. У них значение прямого тока до 300 мА;
  • Выпрямительные диоды средней мощности. Диапазон изменения прямого тока от 300 мА до 10 А;
  • Силовые (большой мощности). Значение более 10 А.

Существуют силовые устройства, зависящие от формы, материала, типа монтажа. Наиболее распространенные из них:

  • Силовые приборы средней мощности. Их технические параметры позволяют работать с напряжением до 1,3 килоВольт;
  • Силовые, большой мощности, могущие пропускать ток до 400 А. Это высоковольтные устройства. Существуют разные корпуса исполнения силовых диодов. Наиболее распространены штыревой и таблеточный вид.

Выпрямительные схемы

Схемы включения силовых устройств бывают различными. Для выпрямления сетевого напряжения они делятся на однофазные и многофазные, однополупериодные и двухполупериодные. Большинство из них однофазные. Ниже представлена конструкция такого однополупериодного выпрямителя и двух графиков напряжения на временной диаграмме.

Переменное напряжение U1 подается на вход (рис. а). Справа на графике оно представлено синусоидой. Состояние диода открытое. Через нагрузку Rн протекает ток. При отрицательном полупериоде диод закрыт. Поэтому к нагрузке подводится только положительная разность потенциалов. На рис. в отражена его временная зависимость. Эта разность потенциалов действует в течение одного полупериода. Отсюда происходит название схемы.

Самая простая двухполупериодная схема состоит из двух однополупериодных. Для такой конструкции выпрямления достаточно двух диодов и одного резистора.

Диоды пропускают только положительную волну переменного тока. Недостатком конструкции является то, что в полупериод переменная разность потенциалов снимается лишь с половины вторичной обмотки трансформатора.

Если в конструкции вместо двух диодов применить четыре коэффициент полезного действия повысится.

Выпрямители широко используются в различных сферах промышленности. Трехфазный прибор задействован в автомобильных генераторах. А применение изобретенного генератора переменного тока способствовало уменьшению размеров этого устройства. Помимо этого, увеличилась его надежность.

В высоковольтных устройствах широко применяют высоковольтные столбы, которые скомпонованы из диодов. Соединены они последовательно.

Импульсные приборы

Импульсным называют прибор, у которого время перехода из одного состояния в другое мало. Они применяются для работы в импульсных схемах. От своих выпрямительных аналогов такие приборы отличаются малыми емкостями p-n переходов.

Для приборов подобного класса, кроме параметров, указанных выше, следует отнести следующие:

  • Максимальные импульсные прямые (обратные) напряжения, токи;
  • Период установки прямого напряжения;
  • Период восстановления обратного сопротивления прибора.

В быстродействующих импульсных схемах широко применяют диоды Шотки.

Импортные приборы

Отечественная промышленность производит достаточное количество приборов. Однако сегодня наиболее востребованы импортные. Они считаются более качественными.

Импортные устройства широко используются в схемах телевизоров и радиоприемников. Их также применяют для защиты различных приборов при неправильном подключении (неправильная полярность). Количество видов импортных диодов разнообразно. Полноценной альтернативной замены их на отечественные пока не существует.

Вольтамперная характеристика (ВАХ) представляет собой график зависимости тока во внешней цепи p-n-перехода от значения и полярности напряжения, прикладываемого к нему. Эта зависимость может быть получена экспериментально или рассчитана на основании уравнения вольтамперной характеристики. Тепловой ток p-n-перехода зависит от концентрации примеси и температуры. Увеличение температуры p-n-перехода приводит к увеличению теплового тока, а, следовательно, к возрастанию прямого и обратного токов.Увеличение концентрации легирующей примеси приводит к умень-шению теплового то-ка, а, следовательно, к уменьшению прямого и обратного токов p-n-перехода.

14. Пробой p - n –перехода – называют резкое изменение режима работы перехода, находящегося под обратным напряжением. Сопровождающееся

Резким увеличением обратного тока, при незначительно уменьшающемся и даже убывающем обратном напряжении:

Три вида пробоя:

1.Тунельный (электрический) – явление прохождение электронов через потенциальный барьер;

2. Лавинный (электрический) – возникает, если, при движении до очередного соударения с атомом дырка(электрон) приобретает энергию достаточную для ионизации атома;

3. Тепловой пробой (необратим) – возникает при разогреве полупроводника и соответствующем увеличением удельной проводимости.

15. Выпрямительный диод: назначение,вах, основные параметры, уго

Выпрямительные диоды служат для преобразования переменного тока в пульсирующий ток одного направления и используется в источниках питания радиоэлектронной аппаратуры.

Германиевые выпрямительные диоды

Изготовление германиевых выпрямительных диодов начинается с вплавления индия в исходную полупроводниковую пластину германия n-типа. В свою очередь исходная пластина припаивается к стальному кристаллодержателю для маломощных выпрямительных диодов или к медному основанию для мощных выпрямительных диодов.

Рис 24 конструкция маломощного сплавного диода. 1- кристаллодержатель; 2 – кристалл; 3 – внутр. вывод; 4 – коваровый корпус; 5 – изолятор; 6 – коваровая трубка; 7 – внешний вывод

Рис 25 ВАХ германиевого диода

Из рис 25 видно, что с ростом температуры в значительной степени увеличивается обратный ток диода, а величина пробивного напряжения уменьшается.

Германиевые диоды различного назначения имеют величину выпрямленного тока от 0,3 до 1000А. Прямое падение напряжения не превышает 0,5В, а допустимое обратное напряжение 400В. Недостатком германиевых диодов является их необратимый пробой даже при кратковременных импульсных перегрузках

Кремниевые выпрямительные диоды

Для получения p-n перехода в кремниевых выпрямительных диодах осуществляют вплавление алюминия в кристалл кремния n-типа, или сплава золота с сурьмой в кремний p-типа. Для получения переходов используют также диффузионные методы. Конструкции ряда маломощных кремниевых диодов практически не отличается от конструкций аналогичных германиевых диодов.

Полупроводниковые приборы

Диоды.

Полупроводниковым диодом называется устройство, пред­ставляющее собой два соединенных полупроводника различ­ной проводимости.

Обозначение на схемах:

V или VD - обозначение диода

VS – обозначение диодной сборки

V7 Анод Цифра после V, показывает номер диода в схеме

Анод – это полупроводник P-типа Катод – это полупроводник N-типа

При приложении внешнего напряжения к диоду в прямом направлении («+» на анод, а « - » на катод) уменьшается потенциальный барьер, увеличивается диффузия – диод открыт (закоротка).

При приложении напряжения в обратном направлении увеличивается потенциальный барьер, прекращается диффузия – диод закрыт (разрыв).

Вольтамперная характеристика (ВАХ) полупроводникового диода.

U эл.проб. = 10 ÷1000 В – напряжение электрического пробоя.

U нас. = 0,3 ÷ 1 В – напряжение насыщения.

I a и U a – анодный ток и напряжение.

Участок I: – рабочий участок (прямая ветвь ВАХ)

Участки II, III, IV, - обратная ветвь ВАХ (не рабочий участок)

Участок II: Если приложить к диоду обратное напряжение – диод закрыт, но все равно через него будет протекать малый обратный ток (ток дрейфа, тепловой ток), обусловленный движением не основных носителей.

Участок III: Участок электрического пробоя. Если приложить достаточно большое напряжение, неосновные носители будут разгоняться и при соударении с узлами кристаллической решетки происходит ударная ионизация, которая в свою очередь приводит к лавинному пробою (вследствие чего резко возрастает ток)

Электрический пробой является обратимым, после снятия напряжения P-N-переход восстанавливается.

Участок IV: Участок теплового пробоя. Возрастает ток, следовательно, увеличивается мощность, что приводит к нагреву диода и он сгорает.

Вслед за электрическим пробоем, очень быстро следует тепловой, поэтому диоды при электрическом пробое не работают. Тепловой пробой - необратим.

Вольтамперная характеристика идеального диода (вентиля)

Основные параметры полупроводниковых приборов:

1. Максимально допустимый средний за период прямой ток (I ПР. СР.)

Это такой ток, который диод способен пропустить в прямом направлении.

Величина допустимого среднего за период прямого тока равна 70% от тока теплового пробоя.

По прямому току диоды делятся на три группы:

1) Диоды малой мощности (I ПР.СР < 0,3 А)

2) Диоды средней мощности (0,3

3) Диоды большой мощности (I ПР.СР > 10 А)

Диоды малой мощности не требуют дополнительного теплоотвода (тепло отводится с помощью корпуса диода)

Для диодов средней и большой мощности, которые не эффективно отводят тепло своими корпусами, требуется дополнительны теплоотвод (радиатор – кубик металла, в котором с помощью литья или фрезерования делают шипы, в результате чего возрастает поверхность теплоотвода. Материал - медь, бронза, алюминий, силумин)

2. Постоянное прямое напряжение (U пр.)

Постоянное прямое напряжение – это падение напряжения между анодом и катодом при протекании максимально допустимого прямого постоянного тока. Проявляется особенно при малом напряжении питания.

Постоянное прямое напряжение зависит от материала диодов (германий - Ge, кремний - Si)

U пр. Ge ≈ 0.3÷0.5 В (Германиевые) U пр. Si ≈ 0.5÷1 В (Кремниевые)

Германиевые диоды обозначают – ГД (1Д)

Кремниевые диоды обозначают – КД (2Д)

3. Повторяющееся импульсное обратное максимальное напряжение (U обр. max)

Электрический пробой идет по амплитудному значению (импульсу) U обр. max ≈ 0.7U Эл. пробоя (10÷100 В)

Для мощных диодов U обр. max = 1200 В.

Этот параметр иногда называют классом диода (12 класс -U обр. max = 1200 В)

4. Максимальный обратный ток диода (I max ..обр.)

Соответствует максимальному обратному напряжению (составляет единицы mA).

Для кремниевых диодов максимальный обратный ток в два раза меньше, чем для германиевых.

5. Дифференциальное (динамическое) сопротивление.


Close