Здесь приведено ручное (не апплетом) решение двух задач симплекс-методом (аналогичным решению апплетом) с подробными объяснениями для того, чтобы понять алгоритм решения задач симплекс-методом. Первая задача содержит знаки неравенства только " ≤ " (задача с начальным базисом), вторая может содержить знаки " ≥ ", " ≤ " или " = " (задача с искусственным базисом), они решаются по разному.

Симплекс-метод, решение задачи с начальным базисом

1)Симплекс-метод для задачи с начальным базисом (все знаки неравенств-ограничений " ≤ ").

Запишем задачу в канонической форме, т.е. ограничения-неравенства перепишем в виде равенств, добавляя балансовые переменные:

Эта система является системой с базисом (базис s 1 , s 2 , s 3 , каждая из них входит только в одно уравнение системы с коэффициентом 1), x 1 и x 2 - свободные переменные. Задачи, при решении которых применяется симплекс-метод, должны обладать следующими двумя свойствами: -система ограничений должна быть системой уравнений с базисом; -свободные члены всех уравнений в системе должны быть неотрицательны.

Полученная система - система с базисом и ее свободные члены неотрицательны, поэтому можно применить симплекс-метод . Составим первую симплекс-таблицу (Итерация 0) для решения задачи на симплекс-метод , т.е. таблицу коэффициентов целевой функции и системы уравнений при соответствующих переменных. Здесь "БП" означает столбец базисных переменных, «Решение» - столбец правых частей уравнений системы. Решение не является оптимальным, т.к. в z – строке есть отрицательные коэффициенты.

симплекс-метод итерация 0

Отношение

Для улучшения решения перейдем к следующей итерации симплекс-метода , получим следующую симплекс-таблицу. Для этого надо выбрать разрешающий столбец , т.е. переменную, которая войдет в базис на следующей итерации симплекс-метода. Он выбирается по наибольшему по модулю отрицательному коэффициенту в z-строке (в задаче на максимум) – в начальной итерации симплекс-метода это столбец x 2 (коэффициент -6).

Затем выбирается разрешающая строка , т.е. переменная, которая выйдет из базиса на следующей итерации симплекс-метода. Она выбирается по наименьшему отношению столбца "Решение" к соответствующим положительным элементам разрешающего столбца (столбец «Отношение») – в начальной итерации это строка s 3 (коэффициент 20).

Разрешающий элемент находится на пересечении разрешающего столбца и разрешающей строки, его ячейка выделена цветом, он равен 1. Следовательно, на следующей итерации симплекс-метода переменная x 2 заменит в базисе s 1 . Заметим, что в z-строке отношение не ищется, там ставится прочерк " - ". В случае если есть одинаковые минимальные отношения, то выбирается любое из них. Если в разрешающем столбце все коэффициенты меньше или равны 0, то решение задачи бесконечно.

Заполним следующую таблицу «Итерация 1». Её мы получим из таблицы «Итерация 0». Цель дальнейших преобразований - превратить разрешающий столбец х 2 в единичный (с единицей вместо разрешающего элемента и нулями вместо остальных элементов).

1)Вычисление строки х 2 таблицы "Итерация 1". Сначала делим все члены разрешающей строки s 3 таблицы "Итерация 0" на разрешающий элемент (он равен 1 в данном случае) этой таблицы, получим строку x 2 в таблице «Итерации 1». Т.к. разрешающий элемент в данном случае равен 1, то строка s 3 таблицы "Итерация 0" будет совпадать со строкой х 2 таблицы "Итерация 1". Строку x 2 таблицы "Итерации 1" мы получили 0 1 0 0 1 20, остальные строки таблицы "Итерация 1" будут получены из этой строки и строк таблицы "Итерация 0" следующим образом:

2) Вычисление z-строки таблицы "Итерация 1". На месте -6 в первой строке (z-строке) в столбце х 2 таблицы "Итерация 0" должен быть 0 в первой строке таблицы "Итерация 1". Для этого все элементы строки х 2 таблицы "Итерация 1" 0 1 0 0 1 20 умножим на 6, получим 0 6 0 0 6 120 и сложим эту строку с первой строкой (z - строкой) таблицы "Итерация 0" -4 -6 0 0 0 0, получим -4 0 0 0 6 120. В столбце x 2 появился ноль 0, цель достигнута. Элементы разрешающего столбца х 2 выделены красным цветом.

3) Вычисление строки s 1 таблицы "Итерация 1". На месте 1 в s 1 строке таблицы "Итерация 0" должен быть 0 в таблице "Итерация 1". Для этого все элементы строки х 2 таблицы "Итерация 1" 0 1 0 0 1 20 умножим на -1, получим 0 -1 0 0 -1 -20 и сложим эту строку с s 1 - строкой таблицы "Итерация 0" 2 1 1 0 0 64, получим строку 2 0 1 0 -1 44. В столбце х 2 получен необходимый 0.

4) Вычисление строки s 2 таблицы "Итерация 1". На месте 3 в s 2 строке таблицы "Итерация 0" должен быть 0 в таблице "Итерация 1". Для этого все элементы строки х 2 таблицы "Итерация 1" 0 1 0 0 1 20 умножим на -3, получим 0 -3 0 0 -3 -60 и сложим эту строку с s 1 - строкой таблицы "Итерация 0" 1 3 0 1 0 72, получим строку 1 0 0 1 -3 12. В столбце х 2 получен нужный 0. Столбец х 2 в таблице "Итерация 1" стал единичным, он содержит одну 1 и остальные 0.

Строки таблицы «Итерация 1» получаем по следующему правилу:

Новая строка = Старая строка – (Коэффициент разрешающего столбца старой строки)*(Новая разрешающая строка).

Например для z-строки имеем:

Старая z-строка (-4 -6 0 0 0 0) -(-6)*Новая разрешающая строка -(0 -6 0 0 -6 -120) =Новая z-строка (-4 0 0 0 6 120).

Для следующих таблиц пересчет элементов таблицы делается аналогично, поэтому мы его опускаем.

симплекс-метод итерация 1

Отношение

Разрешающий столбец х 1 , разрешающая строка s 2 , s 2 выходит из базиса, х 1 входит в базис. Совершенно аналогично получим остальные симплекс-таблицы, пока не будет получена таблица со всеми положительными коэффициентами в z-строке. Это признак оптимальной таблицы.

симплекс-метод итерация 2

Отношение

Разрешающий столбец s 3 , разрешающая строка s 1 , s 1 выходит из базиса, s 3 входит в базис.

симплекс-метод итерация 3

Отношение

В z-строке все коэффициенты неотрицательны, следовательно, получено оптимальное решение x 1 = 24, x 2 = 16, z max = 192.

Данный метод является методом целенаправленного перебора опорных решений задачи линейного программирования. Он позволяет за конечное число шагов либо найти оптимальное решение, либо установить, что оптимальное решение отсутствует.

Основное содержание симплексного метода заключается в следующем:
  1. Указать способ нахождения оптимального опорного решения
  2. Указать способ перехода от одного опорного решения к другому, на котором значение целевой функции будет ближе к оптимальному, т.е. указать способ улучшения опорного решения
  3. Задать критерии, которые позволяют своевременно прекратить перебор опорных решений на оптимальном решении или следать заключение об отсутствии оптимального решения.

Алгоритм симплексного метода решения задач линейного программирования

Для того, чтобы решить задачу симплексным методом необходимо выполнить следующее:
  1. Привести задачу к каноническому виду
  2. Найти начальное опорное решение с "единичным базисом" (если опорное решение отсутствует, то задача не имеет решение ввиду несовместимости системы ограничений)
  3. Вычислить оценки разложений векторов по базису опорного решения и заполнить таблицу симплексного метода
  4. Если выполняется признак единственности оптимального решения, то решение задачи заканчивается
  5. Если выполняется условие существования множества оптимальных решений, то путем простого перебора находят все оптимальные решения

Пример решения задачи симплексным методом

Пример 26.1

Решить симплексным методом задачу:

Решение:

Приводим задачу к каноническому виду.

Для этого в левую часть первого ограничения-неравенства вводим дополнительную переменную x 6 с коэффициентом +1. В целевую функцию переменная x 6 входит с коэффицентом ноль (т.е. не входит).

Получаем:

Находим начальное опорное решение. Для этого свободные (неразрешенные) переменные приравниваем к нулю х1 = х2 = х3 = 0.

Получаем опорное решение Х1 = (0,0,0,24,30,6) с единичным базисом Б1 = (А4, А5, А6).

Вычисляем оценки разложений векторов условий по базису опорного решения по формуле:

Δ k = C б X k — c k

  • C б = (с 1 , с 2 , ... , с m) — вектор коэффициентов целевой функции при базисных переменных
  • X k = (x 1k , x 2k , ... , x mk) — вектор разложения соответствующего вектора А к по базису опорного решения
  • С к — коэффициент целевой функции при переменной х к.

Оценки векторов входящих в базис всегда равны нулю. Опорное решение, коэффиценты разложений и оценки разложений векторов условий по базису опорного решения записываются в симплексную таблицу :

Сверху над таблицей для удобства вычислений оценок записываются коэффициенты целевой функции. В первом столбце "Б" записываются векторы, входящие в базис опорного решения. Порядок записи этих векторов соответствует номерам разрешенных неизвестных в уравнениях ограничениях. Во втором столбце таблицы "С б " записываются коэффициенты целевой функции при базисных переменных в том же порядке. При правильном расположении коэффициентов целевой функции в столбце "С б " оценки единичных векторов, входящих в базис, всегда равных нулю.

В последней строке таблицы с оценками Δ k в столбце "А 0 " записываются значения целевой функции на опорном решении Z(X 1).

Начальное опорное решение не является оптимальным, так как в задаче на максимум оценки Δ 1 = -2, Δ 3 = -9 для векторов А 1 и А 3 отрицательные.

По теореме об улучшении опорного решения, если в задаче на максимум хотя бы один вектор имеет отрицательную оценку, то можно найти новое опорное решение, на котором значение целевой функции будет больше.

Определим, введение какого из двух векторов приведет к большему приращению целевой функции.

Приращение целевой функции находится по формуле: .

Вычисляем значения параметра θ 01 для первого и третьего столбцов по формуле:

Получаем θ 01 = 6 при l = 1, θ 03 = 3 при l = 1 (таблица 26.1).

Находим приращение целевой функции при введении в базис первого вектора ΔZ 1 = — 6*(- 2) = 12, и третьего вектора ΔZ 3 = — 3*(- 9) = 27.

Следовательно, для более быстрого приближения к оптимальному решению необходимо ввести в базис опорного решения вектор А3 вместо первого вектора базиса А6, так как минимум параметра θ 03 достигается в первой строке (l = 1).

Производим преобразование Жордана с элементом Х13 = 2, получаем второе опорное решение Х2 = (0,0,3,21,42,0) с базисом Б2 = (А3, А4, А5). (таблица 26.2)

Это решение не является оптимальным, так как вектор А2 имеет отрицательную оценку Δ2 = — 6. Для улучшение решения необходимо ввести вектор А2 в базис опорного решения.

Определяем номер вектора, выводимого из базиса. Для этого вычисляем параметр θ 02 для второго столбца, он равен 7 при l = 2. Следовательно, из базиса выводим второй вектор базиса А4. Производим преобразование Жордана с элементом х 22 = 3, получаем третье опорное решение Х3 = (0,7,10,0,63,0) Б2 = (А3, А2, А5) (таблица 26.3).

Это решение является единственным оптимальным, так как для всех векторов, не входящих в базис оценки положительные

Δ 1 = 7/2, Δ 4 = 2, Δ 6 = 7/2.

Ответ: max Z(X) = 201 при Х = (0,7,10,0,63).

Метод линейного программирования в экономическом анализе

Метод линейного программирования дает возможность обосновать наиболее оптимальное экономическое решение в условиях жестких ограничений, относящихся к используемым в производстве ресурсам (основные фонды, материалы, трудовые ресурсы). Применение этого метода в экономическом анализе позволяет решать задачи, связанные главным образом с планированием деятельности организации. Данный метод помогает определить оптимальные величины выпуска продукции, а также направления наиболее эффективного использования имеющихся в распоряжении организации производственных ресурсов.

При помощи этого метода осуществляется решение так называемых экстремальных задач, которое заключается в нахождении крайних значений, то есть максимума и минимума функций переменных величин.

Этот период базируется на решении системы линейных уравнений в тех случаях, когда анализируемые экономические явления связаны линейной, строго функциональной зависимостью. Метод линейного программирования используется для анализа переменных величин при наличии определенных ограничивающих факторов.

Весьма распространено решение так называемой транспортной задачи с помощью метода линейного программирования. Содержание этой задачи заключается в минимизации затрат, осуществляемых в связи с эксплуатацией транспортных средств в условиях имеющихся ограничений в отношении количества транспортных средств, их грузоподъемности, продолжительности времени их работы, при наличии необходимости обслуживания максимального количества заказчиков.

Кроме этого, данный метод находит широкое применение при решении задачи составления расписания. Эта задача состоит в таком распределении времени функционирования персонала данной организации, которое являлось бы наиболее приемлемым как для членов этого персонала, так и для клиентов организации.

Данная задача заключается в максимизации количества обслуживаемых клиентов в условиях ограничений количества имеющихся членов персонала, а также фонда рабочего времени.

Таким образом, метод линейного программирования весьма распространен в анализе размещения и использования различных видов ресурсов, а также в процессе планирования и прогнозирования деятельности организаций.

Все же математическое программирование может применяться и в отношении тех экономических явлений, зависимость между которыми не является линейной. Для этой цели могут быть использованы методы нелинейного, динамического и выпуклого программирования.

Нелинейное программирование опирается на нелинейный характер целевой функции или ограничений, либо и того и другого. Формы целевой функции и неравенств ограничений в этих условиях могут быть различными.

Нелинейное программирование применяется в экономическом анализе в частности, при установлении взаимосвязи между показателями, выражающими эффективность деятельности организации и объемом этой деятельности, структурой затрат на производство, конъюнктурой рынка, и др.

Динамическое программирование базируется на построении дерева решений. Каждый ярус этого дерева служит стадией для определения последствий предыдущего решения и для устранения малоэффективных вариантов этого решения. Таким образом, динамическое программирование имеет многошаговый, многоэтапный характер. Этот вид программирования применяется в экономическом анализе с целью поиска оптимальных вариантов развития организации как в настоящее время, так и в будущем.

Выпуклое программирование представляет собой разновидность нелинейного программирования. Этот вид программирования выражает нелинейный характер зависимости между результатами деятельности организации и осуществляемыми ей затратами. Выпуклое (иначе вогнутое) программирование анализирует выпуклые целевые функции и выпуклые системы ограничений (точки допустимых значений). Выпуклое программирование применяется в анализе хозяйственной деятельности с целью минимизации затрат, а вогнутое — с целью максимизации доходов в условиях имеющихся ограничений действия факторов, влияющих на анализируемые показатели противоположным образом. Следовательно, при рассматриваемых видах программирования выпуклые целевые функции минимизируются, а вогнутые — максимизируются.

Рассмотрим симплекс -метод для решения задач линейного программирования (ЛП). Он основан на переходе от одного опорного плана к другому, при котором значение целевой функции возрастает.

Алгоритм симплекс-метода следующий:

  1. Исходную задачу переводим в канонический вид путем введения дополнительных переменных. Для неравенства вида ≤ дополнительные переменные вводят со знаком (+ ), если же вида ≥ то со знаком (— ). В целевую функцию дополнительные переменные вводят с соответствующими знаками с коэффициентом, равным 0 , т.к. целевая функция не должна при этом менять свой экономический смысл.
  2. Выписываются вектора P i из коэффициентов при переменных и столбца свободных членов. Этим действием определяется количество единичных векторов. Правило – единичных векторов должно быть столько, сколько неравенств в системе ограничений.
  3. После этого исходные данные вводятся в симплекс-таблицу. В базис вносятся единичные вектора, и исключая их из базиса, находят оптимальное решение . Коэффициенты целевой функции записывают с противоположным знаком.
  4. Признак оптимальности для задачи ЛП – решение оптимально, если в f – строке все коэффициенты положительны. Правило нахождения разрешающего столбца – просматривается f – строка и среди ее отрицательных элементов выбирается наименьшее. Вектор P i его содержащий становится разрешающим. Правило выбора разрешающего элемента – составляются отношения положительных элементов разрешающего столбца к элементам вектора Р 0 и то число, которое дает наименьшее отношение становится разрешающим элементом, относительно которого будет произведен пересчет симплекс-таблицы. Строка, содержащая этот элемент называется разрешающей строкой. Если в разрешающем столбце нет положительных элементов, то задача не имеет решения. После определения разрешающего элемента переходят к пересчету новой симплекс – таблицы.
  5. Правила заполнения новой симплекс – таблицы. На месте разрешающего элемента проставляют единицу, а другие элементы полагают равными 0 . Разрешающий вектор вносят в базис, из которого исключают соответствующий нулевой вектор, а остальные базисные вектора записывают без изменений. Элементы разрешающей строки делят на разрешающий элемент, а остальные элементы пересчитывают по правилу прямоугольников.
  6. Так поступают до тех пор, пока в f – строке все элементы не станут положительными.

Рассмотрим решение задачи с использованием рассмотренного выше алгоритма.
Дано:

Приводим задачу к каноническому виду:

Составляем вектора:

Заполняем симплекс – таблицу:

:
Пересчитаем первый элемент вектора Р 0 , для чего составляем прямоугольник из чисел: и получаем: .

Аналогичные расчеты выполним для всех остальных элементов симплекс – таблицы:

В полученном плане f – строка содержит один отрицательный элемент – (-5/3), вектора P 1 . Он содержит в своем столбце единственный положительный элемент, который и будет разрешающим элементом. Сделаем пересчет таблицы относительно этого элемента:

Отсутствие отрицательных элементов в f – строке означает, что найден оптимальный план :
F* = 36/5, Х = (12/5, 14/5, 8, 0, 0).

  • Ашманов С. А. Линейное программирование, М: Наука, 1998г.,
  • Вентцель Е.С. Исследование операций, М: Советское радио, 2001г.,
  • Кузнецов Ю.Н., Кузубов В.И., Волошенко А.Б. Математическое программирование, М: Высшая школа, 1986г.

Решение линейного программирования на заказ

Заказать любые задания по этой дисциплине можно у нас на сайте. Прикрепить файлы и указать сроки можно на

Симплексный метод − это метод упорядоченного перебора опорных планов (упорядоченность обеспечивается монотонным изменением значения целевой функции при переходе к очередному плану). При этом необходимо соблюдать принцип: каждый следующий шаг должен улучшить или, в крайнем случае, не ухудшить значение целевой функции.

Для решения ЗЛП симплекс-методом ее приводят к каноническому виду, т.е. из ограничений – неравенств надо сделать ограничения – равенства. Для этого в каждое ограничение вводится дополнительная неотрицательная балансовая переменная со знаком «+», если знак неравенства «£», и со знаком «–», ели знак неравенства «³».

В целевой функции эти дополнительные переменные входят с нулевыми коэффициентами, т.е. запись целевой функции не изменится. Каждую переменную, на которую не наложено условие неотрицательности, можно представить в виде разности двух неотрицательных переменных: .

Если ограничения задачи отображают наличие и расход ресурсов, то числовое значение дополнительной переменной в плане задачи, записанной в канонической форме, равно объему неиспользованного ресурса.

Для решения задачи симплекс-методом будем использовать укороченные симплексные таблицы системы линейных уравнений и метод модифицированного жорданова исключения .

1. Составляем первый опорный план

Задача остается прежней. Приведем стандартную форму системы неравенств (1) в каноническую форму системы уравнений путем введения дополнительных балансовых переменных x 3 , x 4 , x 5 , x 6 .

В экономическом смысле значения дополнительных переменных x 3 , x 4 , x 5 определяют остатки сырья после реализации продукции.

Матрица полученной системы уравнений имеет вид:

Видно, что в матрице A базисным минором 4-го порядка является определитель, составленный из единичных коэффициентов при дополнительных переменных x 3 , x 4 , x 5 , x 6 , так как он отличен от нуля и равен 1. Это означает, что векторы-столбцы при этих переменных является линейно независимыми, т.е. образуют базис , а соответствующие им переменные x 3 , x 4 , x 5 , x 6 являются базисными (основными). Переменные x 1 , x 2 будут называться свободными (неосновными).

Если свободным переменным x 1 и x 2 задавать различные значения, то, решая систему относительно базисных переменных, получим бесконечное множество частных решений. Если свободным переменным задавать только нулевые значения, то из бесконечного множества частных решений выделяют базисные решения – опорные планы.

Чтобы выяснить, могут ли переменные быть базисными, необходимо вычислить определитель, состоящий из коэффициентов при этих переменных. Если данный определитель не равен нулю, то эти переменные могут быть базисными.


Количество базисных решений и соответствующее ему число групп базисных переменных может быть не более, чем , где n –общее число переменных, r – число базисных переменных, r m n .

Для нашей задачи r = 4; n = 6. Тогда , т.е. возможны 15 групп из 4-х базисных переменных (или 15 базисных решений).

Разрешим систему уравнений относительно базисных переменных x 3 , x 4 , x 5 , x 6:

Полагая, что свободные переменные x 1 = 0, x 2 = 0, получим значения базисных переменных: x 3 = 312; x 4 = 15; x 5 = 24; x 6 = –10, т.е. базисное решение будет = (0; 0; 312; 15; 24; –10).

Данное базисное решение является недопустимым , т.к. x 6 = –10 ≤ 0, а по условию ограничений x 6 ≥ 0. Поэтому вместо переменной x 6 в качестве базисной надо взять другую переменную из числа свободных x 1 или x 2 .

Дальнейшее решение будем выполнять, используя укороченные симплексные таблицы, заполнив строки первой таблицы коэффициентами системы следующим образом (табл. 1):

Таблица 1

F –строка называется индексной . Она заполняется коэффициентами целевой функции, взятыми с противоположными знаками, так как уравнение функции можно представить в виде F = 0 – (– 4x 1 – 3x 2).

В столбце свободных членов b i есть отрицательный элемент b 4 = –10, т.е. решение системы является недопустимым. Чтобы получить допустимое решение (опорный план), элемент b 4 надо сделать неотрицательным.

Выбираем x 6 -строку с отрицательным свободным членом. В этой строке есть отрицательные элементы. Выбираем любой из них, например, «–1» в x 1 -столбце, и x 1 -столбец принимаем в качестве разрешающего столбца (он определит, что переменная x 1 перейдет из свободных в базисные).

Делим свободные члены b i на соответствующие элементы a is разрешающего столбца, получаем оценочные отношения Θ i = = {24, 15, 12, 10}. Из них выбираем наименьшее положительное (minΘ i =10), которое будет соответствовать разрешающей строке . Разрешающая строка определяет переменную x j , которая на следующем шаге выступает из базиса и станет свободной. Поэтому x 6 -строка является разрешающей строкой, а элемент «–1» – разрешающим элементом . Обводим его кружком. Переменные x 1 и x 6 меняются местами.

Оценочные отношения Θ i в каждой строке определяются по правилам:

1) Θ i = , если b i и a is имеют разные знаки;

2) Θ i = ∞, если b i = 0 и a is < 0;

3) Θ i = ∞, если a is = 0;

4) Θ i = 0, если b i = 0 и a is > 0;

5) Θ i = , если b i и a is имеют одинаковые знаки.

Совершаем шаг модифицированного жорданова исключения (ШМЖИ) с разрешающим элементом и составляем новую таблицу (табл. 2) по следующему правилу:

1) на месте разрешающего элемента (РЭ) устанавливается величина, ему обратная, т.е. ;

2) элементы разрешающей строки делятся на РЭ;

3) элементы разрешающего столбца делятся на РЭ и знак меняется;

4) остальные элементы находятся по правилу прямоугольника:

Из табл. 2 видно, что свободные члены в b i -столбце являются неотрицательными, следовательно, получено первоначальное допустимое решение – первый опорный план = (10; 0; 182; 5; 4; 0). При этом значение функции F () = 40. Геометрически это соответствует вершине F (10; 0) многоугольника решений (рис. 1).

Таблица 2

2. Проверяем план на оптимальность. Опорный план не оптимальный, так как в F -строке имеется отрицательный коэффициент «–4». Улучшаем план.

3. Нахождение нового опорного плана

Выбираем разрешающий элемент по правилу:

Выбираем наименьший отрицательный коэффициент в F -строке «–4», который и определяет разрешающий столбец – x 6 ; переменную x 6 переводим в базисные;

Находим отношения Θ i , среди них выбираем наименьшее положительное, которое соответствует разрешающей строке:

min Θ i = min {14, 5, 2, ∞} = 2, следовательно, x 5 -строка – разрешающая, переменную x 5 переводим в свободные (переменные x 5 и x 6 меняются местами).

На пересечении разрешающих строки и столбца стоит разрешающий элемент «2»;

Выполняем шаг ШМЖИ, строим табл. 3 по вышеприведенному правилу и получаем новый опорный план = (12; 0; 156; 3; 0; 2).

Таблица 3

4. Проверка нового опорного плана на оптимальность

Опорный план также не является оптимальным, так как в F -строке имеется отрицательный коэффициент «–1». Значение функции F () = 48, что геометрически соответствует вершине E (12; 0) многоугольника решений (рис. 1). Улучшаем план.

5. Нахождение нового опорного плана

x 2 -столбец – разрешающий, так как в F -строке наименьший отрицательный коэффициент «–1» находится в x 2 -столбце (Δ 2 = –1). Находим наименьшее Θ i : min Θ i = min {≈ 9, 6, ∞, 24} = 6, следовательно, x 4 -строка – разрешающая. Разрешающий элемент «1/2». Меняем местами переменные x 2 и x 4 . Выполняем шаг ШМЖИ, строим табл. 4, получаем новый опорный план = (9; 6; 51; 0; 0; 5).

6. Проверка опорного плана на оптимальность

В F -строке все коэффициенты неотрицательны, следовательно, опорный план является оптимальным. Геометрически соответствует точке D (9;6) (см. рис. 1). Оптимальный план дает максимальное значение целевой функции у.е.


Найти наибольшее значение функции

x 1 ≥ 0 x 2 ≥ 0

1. Свободные члены системы должны быть неотрицательными.

Данное условие выполнено.


2. Каждое ограничение системы должно представлять собой уравнение.

x 1 + x 1 x 1 x 2
2 x 2 4
- x 2 1
+ 8
x 1 + S 1 x 1 x 1 x 2 S 3
2 x 2 + = 4
- x 2 - S 2 = 1
+ + = 8

S 1 ≥ 0, S 2 ≥ 0, S 3 ≥ 0. Введенные переменные S 1 , S 2 , S 3 , называются балансовыми переменными.


3. Нахождение начального базиса и значения функции F, которое соответствует найденному начальному базису.


Что такое базис?
Переменная называется базисной для данного уравнения, если она входит в данное уравнение с коэффициентом один и не входит в оставшиеся уравнения системы (при условии, что в правой части уравнения стоит неотрицательное число).
Если в каждом уравнении присутствует базисная переменная, тогда говорят, что в системе присутствует базис.
Переменные, которые не являются базисными, называются свободными.

В чем заключается идея симплекс метода?
Каждому базису соответствует единственное значение функции. Одно из них является наибольшим значением функции F.
Мы будем переходить от одного базиса к другому.
Следующий базис будем выбирать таким образом, чтобы получить значение функции F не меньше имеющегося.
Очевидно, количество возможных базисов для любой задачи число не очень большое.
Следовательно, рано или поздно, ответ будет получен.

Как осуществляется переход от одного базиса к другому?
Запись решения удобнее вести в виде таблиц. Каждая строка таблицы эквивалентна уравнению системы. Выделенная строка состоит из коэффициентов функции (см. таблицу ниже). Это позволяет не переписывать переменные каждый раз, что существенно экономит время.
B выделенной строке выбираем наибольший положительный коэффициент (можно выбрать любой положительный).
Это необходимо для того, чтобы получить значение функции F не меньше имеющегося.
Выбран столбец.
Для положительных коэффициентов выбранного столбца считаем отношение Θ и выбираем наименьшее значение.
Это необходимо для того, чтобы после преобразования столбец свободных членов остался неотрицательным.
Выбрана строка.
Определен элемент, который будет базисным. Далее считаем.

В нашей системе есть базис?

x 1 + x 1 x 1 x 2
2 x 2 + S 1 = 4
- x 2 - S 2 = 1
+ + S 3 = 8

Базиса нет, т.е. мы не можем начать решение.
Придется его найти. Для этого решим вспомогательную задачу.
Добавим искусственную переменную в то уравнение, где нет базисной переменной.

x 1 + x 1 x 1 x 2
2 x 2 + S 1 = 4
- x 2 - S 2 + R 1 = 1
+ + S 3 = 8

R 1 ≥ 0. Введенная переменная R 1 , называется искусственной переменной.

Введем в рассмотрение функцию W и будем искать ее наименьшее значение.

Алгоритм нахождения наименьшего значения функции W имеет только одно отличие от алгоритма, рассмотренного выше.


x 1 x 2 S 1 S 2 S 3 R 1 св. член Θ
1 2 1 0 0 0 4 4: 1 = 4
1 -1 0 -1 0 1 1 1: 1 = 1
1 1 0 0 1 0 8 8: 1 = 8
-1 1 0 1 0 0 W - 1
0 3 1 1 0 -1 3
1 -1 0 -1 0 1 1
0 2 0 1 1 -1 7
0 0 0 0 0 1 W - 0

Приравниваем свободные переменные нулю. Устно находим значения базисных переменных. (см. таблицу)
Функция W выражена через свободные переменные. Поэтому значение функции W, для данного базиса, можно найти мгновенно. (см. выделенную строку таблицы)

x 2 = 0 S 2 = 0 R 1 = 0
x 1 = 1 S 1 = 3 S 3 = 7
=> W - 0 = 0 => W = 0

Среди коэффициентов выделенной строки нет отрицательных. Следовательно, найдено наименьшее значение функции W.
Получен базис без использования искусственной переменной. Что и требовалось.
Столбец, соответствующий искусственной переменной можно вычеркнуть.
В итоге, наша система выглядит следующим образом:

S 2 S 2
3 x 2 + S 1 + = 3
x 1 - x 2 - S 2 = 1
2 x 2 + + S 3 = 7
F = - x 1 + 3 x 2
F = -
( 1 + x 2 + S 2 )
+ 3 x 2
= -1 + 2 x 2 - S 2

Close