Любое тело может находиться в разных агрегатных состояниях при определенных температуре и давлении - в твердом, жидком, газообразном и плазменном состояниях.

Для перехода из одного агрегатного состояния в другое происходит при условии, что нагревание тела из вне происходит быстрее, чем его охлаждение. И наоборот, если охлаждение тела из вне происходит быстрее, чем нагрев тела за счет его внутренней энергии.

При переходе в другое агрегатное состояние вещество остается прежним, останутся те же молекулы, изменится только их взаимное расположение, скорость движения и силы взаимодействия друг с другом.

Т.е. изменение внутренней энергии частиц тела переводит его из одной фазы состояния в другую. При этом это состояние может поддерживаться в большом температурном интервале внешней среды.

При изменении агрегатного состояния нужно определенное количество энергии. И в процессе перехода энергия тратится не на изменение температуры тела, а на изменение внутренней энергии тела.

Отобразим на графике зависимость температуры тела T (при постоянном давлении) от количества подаваемого к телу тепла Q при переходе из одного агрегатного состояния в другое.

Рассмотри тело массой m , которое находится в твердом состоянии с температурой T 1 .

Тело переходит не моментально из одного состояния в другое. Сначала нужна энергия на изменение внутренней энергии, а на это нужно время. Скорость перехода зависит от массы тела и его теплоёмкости.

Начнем нагревать тело. Через формулы можно записать так:

Q = c⋅m⋅(T 2 -T 1)

Столько тепла тело должно усвоить, чтобы нагреться с температуры T 1 до T 2 .

Переход твердого тела в жидкое

Далее при критической температуре T 2 , которая для каждого тела своя, начинают рушиться межмолекулярные связи и тело переходит в другое агрегатное состояние - жидкость, т.е. межмолекулярные связи слабеют, молекулы начинаю перемещаться с большей амплитудой с большей скоростью и большей кинетической энергией. Поэтому температура одного и того же тела в жидком состоянии выше, чем в твердом.

Для того чтобы всё тело перешло из твердого состояния в жидкое, нужно время на накопление внутренней энергии. В это время вся энергия идет не на нагрев тела, а на разрушение старых межмолекулярных связей и создание новых. Количество энергии нужно:

λ - удельная теплота плавления и кристаллизации вещества в Дж/кг, для каждого вещества своя.

После того как всё тело перешло в жидкое состояние, эта жидкость опять начинает нагреваться по формуле: Q = c⋅m⋅(T-T 2); [Дж].

Переход тела из жидкого состояния в газообразное

При достижении новой критической температуры Т 3 , начинается новый процесс перехода из жидкого состояния в парообразный. Чтобы дальше перейти из жидкости в пар, нужно затратить энергии:

r - удельная теплота газообразования и конденсации вещества в Дж/кг, для каждого вещества своя.

Заметим, что возможен переход из твердого состояния в газообразное состояние, минуя жидкую фазу. Такой процесс именуется возгонкой , а обратный ему процесс - десублимацией .

Переход тела из газообразного состояния в плазменное

Плазма - частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы.

Плазма обычно возникает при высокой температуре, от нескольких тысяч °С и выше. По способу образования различают два вида плазмы: термическую, возникающую при нагревании газа до высоких температур, и газообразную, образующуюся при электрических разрядах в газовой среде.

Этот процесс очень сложный и имеет простого описания, да и нам в бытовых условиях он не достижим. Поэтому не будем подробно останавливаться на этом вопросе.

Наиболее распространено знание о трех агрегатных состояниях: жидком, твердом, газообразном, иногда вспоминают о плазменном, реже жидкокристаллическом. Последнее время в интернете распространился перечень 17 фаз вещества, взятый из известной () Стивена Фрая. Поэтому мы расскажем о них подробнее, т.к. о материи следует знать немного больше хотя бы для того, чтобы лучше понимать процессы, происходящие во Вселенной.

Приведённый ниже список агрегатных состояний вещества возрастает от самых холодных состояний к самым горячим и т.о. может быть продолжен. Одновременно следует понимать, что от газообразного состояния (№11), самого «разжатого», в обе стороны списка степень сжатия вещества и его давление (с некоторыми оговорками для таких неизученных гипотетических состояний, как квантовое, лучевое или слабо симметричное) возрастают.После текста приведен наглядный график фазовых переходов материи.

1. Квантовое — агрегатное состояние вещества, достигаемое при понижении температуры до абсолютного нуля, в результате чего исчезают внутренние связи и материя рассыпается на свободные кварки.

2. Конденсат Бозе-Эйнштейна — агрегатное состояние материи, основу которой составляют бозоны, охлаждённые до температур, близких к абсолютному нулю (меньше миллионной доли градуса выше абсолютного нуля). В таком сильно охлаждённом состоянии достаточно большое число атомов оказывается в своих минимально возможных квантовых состояниях и квантовые эффекты начинают проявляться на макроскопическом уровне. Конденсат Бозе-Эйнштейна (который зачастую называют «бозе-конденсат», или попросту «бэк») возникает, когда вы охлаждаете тот или иной химический элемент до чрезвычайно низких температур (как правило, до температуры чуть выше абсолютного нуля, минус 273 градуса по Цельсию, — теоретическая температура, при которой все перестает двигаться).
Вот тут с веществом начинают происходить совершенно странные вещи. Процессы, обычно наблюдаемые лишь на уровне атомов, теперь протекают в масштабах, достаточно крупных для наблюдения невооруженным глазом. Например, если поместить «бэк» в лабораторный стакан и обеспечить нужный температурный режим, вещество начнет ползти вверх по стенке и в конце концов само по себе выберется наружу.
Судя по всему, здесь мы имеем дело с тщетной попыткой вещества понизить собственную энергию (которая и без того находится на самом низком из всех возможных уровней).
Замедление атомов с использованием охлаждающей аппаратуры позволяет получить сингулярное квантовое состояние, известное как конденсат Бозе, или Бозе — Эйнштейна. Это явление было предсказано в 1925 году А. Эйнштейном, как результат обобщения работы Ш. Бозе, где строилась статистическая механика для частиц, начиная от безмассовых фотоно до обладающих массой атомов (рукопись Эйнштейна, считавшаяся утерянной, была обнаружена в библиотеке Лейденского университета в 2005 году). Результатом усилий Бозе и Эйнштейна стала концепция Бозе газа, подчиняющегося статистике Бозе — Эйнштейна, которая описывает статистическое распределение тождественных частиц с целым спином, называемых бозонами. Бозоны, которыми являются, например, и отдельные элементарные частицы — фотоны, и целые атомы, могут находиться друг с другом в одинаковых квантовых состояниях. Эйнштейн предположил, что охлаждение атомов — бозонов до очень низких температур заставит их перейти (или, по-другому, сконденсироваться) в наинизшее возможное квантовое состояние. Результатом такой конденсации станет возникновение новой формы вещества.
Этот переход возникает ниже критической температуры, которая для однородного трёхмерного газа, состоящего из невзаимодействующих частиц без каких-либо внутренних степеней свободы.

3. Фермионный конденсат — агрегатное состояние вещества, схожее с бэком, но отличающееся по строению. При приближении к абсолютному нулю атомы ведут себя по-разному в зависимости от величины собственного момента количества движения (спина). У бозонов спины имеют целочисленные значения, а у фермионов - кратные 1/2 (1/2, 3/2, 5/2). Фермионы подчиняются принципу запрета Паули, согласно которому два фермиона не могут иметь одно и то же квантовое состояние. Для бозонов такого запрета нет, и поэтому у них есть возможность существовать в одном квантовом состоянии и образовывать тем самым так называмый конденсат Бозе-Эйнштейна. Процесс образования этого конденсата отвечает за переход в сверхпроводящее состояние.
Электроны имеют спин 1/2 и, следовательно, относятся к фермионам. Они объединяются в пары (так называемые пары Купера), которые затем образуют Бозе-конденсат.
Американские ученые предприняли попытку получить своего рода молекулы из атомов-фермионов при глубоком охлаждении. Отличие от настоящих молекул заключалось в том, что между атомами не было химической связи - просто они двигались вместе, коррелированным образом. Связь между атомами оказалась даже прочнее, чем между электронами в куперовских парах. У образованных пар фермионов суммарный спин уже не кратен 1/2, следовательно, они уже ведут себя как бозоны и могут образовывать бозе-конденсат с единым квантовым состоянием. В ходе эксперимента охлаждали газ из атомов калия-40 до 300 нанокельвинов, при этом газ заключался в так называемую оптическую ловушку. Затем наложили внешнее магнитное поле, с помощью которого удалось изменить природу взаимодействий между атомами - вместо сильного отталкивания стало наблюдаться сильное притяжение. При анализе влияния магнитного поля удалось найти такое его значение, при котором атомы стали вести себя, как куперовские пары электронов. На следующем этапе эксперимента ученые предполагают получить эффекты сверхпроводимости для фермионного конденсата.

4. Сверхтекучее вещество — состояние, при котором у вещества фактически отсутствует вязкость, а при течении он не испытывает трения с твёрдой поверхностью. Следствием этого является, например, такой интересный эффект, как полное самопроизвольное «выползание» сверхтекучего гелия из сосуда по его стенкам против силы тяжести. Нарушения закона сохранения энергии здесь, конечно же, нет. В отсутствие сил трения на гелий действуют только силы тяжести, силы межатомного взаимодействия между гелием и стенками сосуда и между атомами гелия. Так вот, силы межатомного взаимодействия превышают все остальные силы вместе взятые. В результате гелий стремится растечься как можно сильнее по всем возможным поверхностям, поэтому и «путешествует» по стенкам сосуда. В 1938 году советский учёный Пётр Капица доказал, что гелий может существовать в сверхтекучем состоянии.
Стоит отметить, что многие из необычных свойств гелия известны уже довольно давно. Однако и в последние годы этот химический элемент «балует» нас интересными и неожиданными эффектами. Так, в 2004 году Мозес Чань и Эун-Сьонг Ким из Университета Пенсильвании заинтриговали научный мир заявлением о том, что им удалось получить совершенно новое состояние гелия — сверхтекучее твёрдое вещество. В этом состоянии одни атомы гелия в кристаллической решётке могут обтекать другие, и гелий таким образом может течь сам через себя. Эффект «сверхтвёрдости» теоретически был предсказан ещё в 1969 году. И вот в 2004 году — как будто бы и экспериментальное подтверждение. Однако более поздние и весьма любопытные эксперименты показали, что не всё так просто, и, возможно, такая интерпретация явления, которое до этого принималось за сверхтекучесть твёрдого гелия, неверна.
Эксперимент учёных под руководством Хэмфри Мариса из Университета Брауна в США был прост и изящен. Учёные помещали перевёрнутую вверх дном пробирку в замкнутый резервуар с жидким гелием. Часть гелия в пробирке и в резервуаре они замораживали таким образом, чтобы граница между жидким и твёрдым внутри пробирки была выше, чем в резервуаре. Иными словами, в верхней части пробирки был жидкий гелий, в нижней — твёрдый, он плавно переходил в твёрдую фазу резервуара, над которой был налито немного жидкого гелия — ниже, чем уровень жидкости в пробирке. Если бы жидкий гелий стал просачиваться через твёрдый, то разница уровней уменьшилась бы, и тогда можно говорить о твёрдом сверхтекучем гелии. И в принципе, в трёх из 13 экспериментов разница уровней действительно уменьшалась.

5. Сверхтвёрдое вещество — агрегатное состояние при котором материя прозрачна и может "течь", как жидкость, но фактически она лишена вязкости. Такие жидкости известны много лет, их называют суперфлюидами. Дело в том, что если супержидкость размешать, она будет циркулировать чуть ли не вечно, тогда как нормальная жидкость в конечном счёте успокоится. Первые два суперфлюида были созданы исследователями с использованием гелия-4 и гелия-3. Они были охлаждены почти до абсолютного нуля — до минус 273 градусов Цельсия. А из гелия-4 американским учёным удалось получить сверхтвёрдое тело. Замороженный гелий они сжали давлением более чем в 60 раз, а затем заполненный веществом стакан установили на вращающийся диск. При температуре 0,175 градусов Цельсия диск внезапно начал вращаться свободнее, что, по мнению учёных, свидетельствует о том, что гелий стал супертелом.

6. Твёрдое — агрегатное состояние вещества, отличающееся стабильностью формы и характером теплового движения атомов, которые совершают малые колебания вокруг положений равновесия. Устойчивым состоянием твердых тел является кристаллическое. Различают твердые тела с ионной, ковалентной, металлической и др. типами связи между атомами, что обусловливает разнообразие их физических свойств. Электрические и некоторые др. свойства твердых тел в основном определяются характером движения внешних электронов его атомов. По электрическим свойствам твердые тела делятся на диэлектрики, полупроводники и металлы, по магнитным — на диамагнетики, парамагнетики и тела с упорядоченной магнитной структурой. Исследования свойств твердых тел объединились в большую область — физику твердого тела, развитие которой стимулируется потребностями техники.

7. Аморфное твёрдое — конденсированное агрегатное состояние вещества, характеризующееся изотропией физических свойств, обусловленной неупорядоченным расположением атомов и молекул. В аморфных твердых телах атомы колеблются около хаотически расположенных точек. В отличие от кристаллического состояния переход из твердого аморфного в жидкое происходит постепенно. В аморфном состоянии находятся различные вещества: стекла, смолы, пластмассы и т. д.

8. Жидкокристаллическое — это специфическое агрегатное со-стояние вещества, в котором оно проявляет одновре-менно свойства кристалла и жидкости. Сразу надо огово-риться, что далеко не все вещества могут находиться в жидкокристаллическом состоянии. Однако, некоторые органические вещества, обладающие сложными молеку-лами, могут образовы-вать специфическое агрегатное состояние — жидкокристалли-ческое. Это состояние осуществляется при плавлении кристаллов некоторых веществ. При их плавлении обра-зуется жидкокристаллическая фаза, отличающаяся от обычных жидкостей. Эта фаза существует в интервале от температуры плавления кристалла до некоторой более высокой температуры, при нагреве до которой жидкий кристалл переходит в обычную жидкость.
Чем же жидкий кристалл отличается от жидкости и обычного кристалла и чем похож на них? Подобно обычной жидкости, жидкий кристалл обладает текучестью и принимает форму сосуда, в который он помещен. Этим он отличается от известных всем кристаллов. Однако, несмотря на это свойство, объединяющее его с жид-костью, он обладает свойством, характерным для кри-сталлов. Это - упорядочение в пространстве молекул, образующих кристалл. Правда, это упорядочение не та-кое полное, как в обычных кристаллах, но, тем не менее, оно существенно влияет на свойства жидких кристаллов, чем и отличает их от обычных жидкостей. Неполное про-странственное упорядочение молекул, образующих жид-кий кристалл, проявляется в том, что в жидких кристал-лах нет полного порядка в пространственном располо-жении центров тяжести молекул, хотя частичный порядок может быть. Это означает, что у них нет жесткой кри-сталлической решетки. Поэтому жидкие кристаллы, по-добно обычным жидкостям, обладают свойством текуче-сти.
Обязательным свойством жидких кристаллов, сбли-жающим их с обычными кристаллами, является наличие порядка пространственной ориентации молекул. Такой порядок в ориентации может проявляться, например, в том, что все длинные оси молекул в жидкокристалличе-ском образце ориентированы одинаково. Эти молекулы должны обладать вытянутой формой. Кроме простейше-го названного упорядочения осей молекул, в жидком кристалле может осуществляться более сложный ориентационный порядок молекул.
В зависимости от вида упорядочения осей молекул жидкие кристаллы разделяются на три разновидности: нематические, смектические и холестерические.
Исследования по физике жидких кристаллов и их при-менениям в настоящее время ведутся широким фрон-том во всех наиболее развитых странах мира. Отечествен-ные исследования сосредоточены как в академических, так и отраслевых научно-исследовательских учреждени-ях и имеют давние традиции. Широкую известность и признание получили выполненные еще в тридцатые годы в Ленинграде работы В.К. Фредерикса к В.Н. Цветкова. В последние годы бурного изучения жидких кристаллов отечественные исследователи также вносят весомый вклад в развитие учения о жидких кристаллах в целом и, в частности, об оптике жидких кристаллов. Так, работы И.Г. Чистякова, А.П. Капустина, С.А. Бразовского, С.А. Пикина, Л.М. Блинова и многих других советских иссле-дователей широко известны научной общественности и служат фундаментом ряда эффективных технических приложений жидких кристаллов.
Существование жидких кристаллов было установлено очень давно, а именно в 1888 году, то есть почти столетие назад. Хотя учёные и до 1888 года сталкивались с данным состоянием вещества, но официально его открыли позже.
Первым, кто обнаружил жидкие кристаллы, был авст-рийский ученый-ботаник Рейнитцер. Исследуя новое син-тезированное им вещество холестерилбензоат, он обна-ружил, что при температуре 145°С кристаллы этого ве-щества плавятся, образуя мутную сильно рассеивающую свет жидкость. При продолжении нагрева по достижении температуры 179°С жидкость просветляется, т. е. начина-ет вести себя в оптическом отношении, как обычная жидкость, например вода. Неожиданные свойства холестерилбензоат обнаруживал в мутной фазе. Рассматри-вая эту фазу под поляризационным микроскопом, Рей-нитцер обнаружил, что она обладает двупреломлением. Это означает, что показатель преломления света, т. е скорость света е этой фазе, зависит от поляризации.

9. Жидкое — агрегатное состояние вещества, сочетающее в себе черты твердого состояния (сохранение объема, определенная прочность на разрыв) и газообразного (изменчивость формы). Для жидкости характерны ближний порядок в расположении частиц (молекул, атомов) и малое различие в кинетической энергии теплового движения молекул и их потенциальной энергии взаимодействия. Тепловое движение молекул жидкости состоит из колебаний около положений равновесия и сравнительно редких перескоков из одного равновесного положения в другое, с этим связана текучесть жидкости.

10. Сверхкритический флюид (СКФ) — агрегатное состояние вещества, при котором исчезает различие между жидкой и газовой фазой. Любое вещество, находящееся при температуре и давлении выше критической точки является сверхкритическим флюидом. Свойства вещества в сверхкритическом состоянии промежуточные между его свойствами в газовой и жидкой фазе. Так, СКФ обладает высокой плотностью, близкой к жидкости, и низкой вязкостью, как и газы. Коэффициент диффузии при этом имеет промежуточное между жидкостью и газом значение. Вещества в сверхкритическом состоянии могут применяться в качестве заменителей органических растворителей в лабораторных и промышленных процессах. Наибольший интерес и распространение в связи с определенными свойствами получили сверхкритическая вода и сверхкритический диоксид углерода.
Одно из наиболее важных свойств сверхкритического состояния - это способность к растворению веществ. Изменяя температуру или давление флюида можно менять его свойства в широком диапазоне. Так, можно получить флюид, по свойствам близкий либо к жидкости, либо к газу. Так, растворяющая способность флюида увеличивается с увеличением плотности (при постоянной температуре). Поскольку плотность возрастает при увеличении давления, то меняя давление можно влиять на растворяющую способность флюида (при постоянной температуре). В случае с температурой завистимость свойств флюида несколько более сложная - при постоянной плотности растворяющая способность флюида также возрастает, однако вблизи критической точки незначительное увеличение температуры может привести к резкому падению плотности, и, соответственно, растворяющей способности. Сверхкритические флюиды неограниченно смешиваются друг с другом, поэтому при достижении критической точки смеси система всегда будет однофазной. Приблизительная критическая температура бинарной смеси может быть рассчитана как среднее арифмитическое от критических параметров веществ Tc(mix) = (мольная доля A) x TcA + (мольная доля B) x TcB.

11. Газообразное — (франц. gaz, от греч. chaos — хаос), агрегатное состояние вещества, в котором кинетическая энергия теплового движения его частиц (молекул, атомов, ионов) значительно превосходит потенциальную энергию взаимодействий между ними, в связи с чем частицы движутся свободно, равномерно заполняя в отсутствие внешних полей весь предоставленный им объем.

12. Плазма — (от греч. plasma — вылепленное, оформленное), состояние вещества, представляющее из себя ионизованный газ, в котором концентрации положительных и отрицательных зарядов равны (квазинейтральность). В состоянии плазмы находится подавляющая часть вещества Вселенной: звезды, галактические туманности и межзвездная среда. Около Земли плазма существует в виде солнечного ветра, магнитосферы и ионосферы. Высокотемпературная плазма (Т ~ 106 — 108К) из смеси дейтерия и трития исследуется с целью осуществления управляемого термоядерного синтеза. Низкотемпературная плазма (Т Ј 105К) используется в различных газоразрядных приборах (газовых лазерах, ионных приборах, МГД-генераторах, плазмотронах, плазменных двигателях и т. д.), а также в технике (см. Плазменная металлургия, Плазменное бурение, Плазменная технология).

13. Вырожденное вещество — является промежуточной стадией между плазмой и нейтрониумом. Оно наблюдается в белых карликах, играет важную роль в эволюции звезд. Когда атомы находятся в условиях чрезвычайно высоких температур и давлений, они теряют свои электроны (они переходят в электронный газ). Другими словами, они полностью ионизованы (плазма). Давление такого газа (плазмы) определяется давлением электронов. Если плотность очень высока, все частицы вынуждены приближаться к друг другу. Электроны могут находится в состояниях с определенными энергиями, причем два электрона не могут иметь одинаковую энергию (если только их спины не противоположны). Таким образом, в плотном газе все нижние уровни энергии оказываются заполненными электронами. Такой газ называется вырожденным. В этом состоянии электроны проявляют вырожденное электронное давление, которое противодействует силам гравитации.

14. Нейтрониум — агрегатное состояние, в которое вещество переходит при сверхвысоком давлении, недостижимом пока в лаборатории, но существующем внутри нейтронных звёзд. При переходе в нейтронное состояние электроны вещества взаимодействуют с протонами и превращаются в нейтроны. В результате вещество в нейтронном состоянии полностью состоит из нейтронов и обладает плотностью порядка ядерной. Температура вещества при этом не должна быть слишком высока (в энергетическом эквиваленте не более сотни МэВ).
При сильном повышении температуры (сотни МэВ и выше) в нейтронном состоянии начинают рождаться и аннигилировать разнообразные мезоны. При дальнейшем повышении температуры происходит деконфайнмент, и вещество переходит в состояние кварк-глюонной плазмы. Оно состоит уже не из адронов, а из постоянно рождающихся и исчезающих кварков и глюонов.

15. Кварк-глюонная плазма (хромоплазма) — агрегатное состояние вещества в физике высоких энергий и физике элементарных частиц, при котором адронное вещество переходит в состояние, аналогичное состоянию, в котором находятся электроны и ионы в обычной плазме.
Обычно вещество в адронах находится в так называемом бесцветном («белом») состоянии. То есть, кварки различных цветов компенсируют друг друга. Аналогичное состояние есть и у обычного вещества — когда все атомы электрически нейтральны, то есть,
положительные заряды в них компенсированы отрицательными. При высоких температурах может происходить ионизация атомов, при этом заряды разделяются, и вещество становится, как говорят, «квазинейтральным». То есть, нейтральным остаётся всё облако вещества в целом, а отдельные его частицы нейтральными быть перестают. Точно так же, по-видимому, может происходить и с адронным веществом — при очень высоких энергиях, цвет выходит на свободу и делает вещество «квазибесцветным».
Предположительно, вещество Вселенной находилось в состоянии кварк-глюонной плазмы в первые мгновения после Большого Взрыва. Сейчас кварк-глюонная плазма может на короткое время образовываться при соударениях частиц очень высоких энергий.
Кварк-глюонная плазма была получена экспериментально на ускорителе RHIC Брукхейвенской национальной лаборатории в 2005 году. Максимальная температура плазмы в 4 триллиона градусов Цельсия была получена там же в феврале 2010 года.

16. Странное вещество — агрегатное состояние, при котором материя сжимается до предельных значений плотности, оно может существовать в виде "кваркового супа". Кубический сантиметр вещества в этом состоянии будет весить миллиарды тонн; к тому же он будет превращать любое нормальное вещество, с которым соприкоснётся, в ту же "странную" форму с выбросом значительного количества энергии.
Энергия, которая может выделиться при превращении вещества ядра звезды в "странное вещество", приведёт к сверхмощному взрыву "кварковой новой", - и, по мнению Лихи и Уйеда, именно его астрономы в сентябре 2006 года и наблюдали.
Процесс образования этого вещества начался с обычной сверхновой, в которую обратилась массивная звезда. В результате первого взрыва образовалась нейтронная звезда. Но, по мнению Лихи и Уйеда, просуществовала она очень недолго, - по мере того, как её вращение казалось затормозилось её собственным магнитным полем, она начала сжиматься ещё сильнее, с образованием сгустка "странного вещества", что привело к ещё более мощному, нежели при обычном взрыве сверхновой, выбросу энергии - и внешних слоёв вещества бывшей нейтронной звезды, разлетавшихся в окружающее пространство со скоростью, близкой к скорости света.

17. Сильно симметричное вещество — это вещество, сжатое до такой степени, при которой микрочастицы внутри него наслаиваются друг на друга, а само тело коллапсирует в чёрную дыру. Термин «симметрия» объясняется следующим: Возьмём известные всем со школьной скамьи агрегатные состояния вещества - твёрдые, жидкие, газообразные. Для определённости в качестве твёрдого вещества рассмотрим идеальный бесконечный кристалл. В нём существует определённая, так называемая дискретная симметрия относительно переноса. Это означает, что, если сдвинуть кристаллическую решётку на расстояние, равное интервалу между двумя атомами, в ней ничего не изменится - кристалл совпадет сам с собой. Если же кристалл расплавить, то симметрия получившейся из него жидкости будет иной: она возрастёт. В кристалле равноценными были только точки, удалённые друг от друга на определённые расстояния, так называемые узлы кристаллической решётки, в которых находились одинаковые атомы.
Жидкость же однородна по всему объёму, все её точки неотличимы одна от другой. Это означает, что жидкости можно смещаться на любые произвольные расстояния (а не только на какие-то дискретные, как в кристалле) или поворачиваться на любые произвольные углы (чего в кристаллах делать нельзя вообще) и она будет совпадать сама с собой. Степень её симметрии выше. Газ ещё более симметричен: жидкость занимает определённый объём в сосуде и наблюдается асимметрия внутри сосуда, где жидкость есть, и точки, где её нет. Газ же занимает весь предоставленный ему объём, и в этом смысле все её точки неотличимы одна от другой. Всё же здесь было бы правильнее говорить не о точках, а о малых, но макроскопических элементах, потому что на микроскопическом уровне отличия всё-таки есть. В одних точках в данный момент времени имеются атомы или молекулы, а в других нет. Симметрия наблюдается только в среднем, либо по некоторым макроскопическим параметра объёма, либо по времени.
Но мгновенной симметрии на микроскопическом уровне здесь по-прежнему ещё нет. Если же вещество сжимать очень сильно, до давлений которые в обиходе недопустимы, сжимать так, что атомы были раздавлены, их оболочки проникли друг в друга, а ядра начали соприкасаться, возникает симметрия и на микроскопическом уровне. Все ядра одинаковы и прижаты друг к другу, нет не только межатомных, но и межъядерных расстояний и вещество становится однородным (странное вещество).
Но есть ещё субмикроскопический уровень. Ядра состоят из протонов и нейтронов, которые двигаются внутри ядра. Между ними тоже есть какое-то пространство. Если продолжать сжимать так, что будут раздавлены и ядра, нуклоны плотно прижмутся друг к другу. Тогда и на субмикроскопическом уровне появится симметрия, которой нет даже внутри обычных ядер.
Из сказанного можно усмотреть вполне определённую тенденцию: чем выше температура и больше давление, тем более симметричным становится вещество. Исходя из этих соображений сжатое до максимума вещество именуется сильно симметричным.

18. Слабо симметричное вещество — состояние, противоположное сильно симметричному веществу по своим свойствам, присутствовавшее в очень ранней Вселенной при температуре близкой к планковской, возможно, через 10-12 секунд после Большого Взрыва, когда сильные, слабые и электромагнитные силы представляли из себя единую суперсилу. В этом состоянии вещество сжато до такой степени, что его масса переходит в энергию, которая начинает инфлуировать, то есть неограниченно расширяться. Достичь энергий для экспериментального получения суперсилы и перевода вещества в эту фазу в земных условиях пока невозможно, хотя такие попытки предпринимались на Большом Адронном Коллайдере с целью изучения ранней вселенной. Ввиду отсутствия в составе суперсилы, образующей это вещество, гравитационного взаимодействия, суперсила является не достаточно симметричной в сравнении с суперсимметричной силой, содержащей все 4 вида взаимодействий. Поэтому данное агрегатное состояние и получило такое название.

19. Лучевое вещество — это, по сути дела, уже совсем не вещество, а в чистом виде энергия. Однако именно это гипотетическое агрегатное состояние примет тело, достигшее скорости света. Также его можно получить, разогрев тело до планковской температуры (1032К), то есть разогнав молекулы вещества до скорости света. Как следует из теории относительности, при достижении скорости более 0,99 с, масса тела начинает расти гораздо быстрее, нежели при "обычном" ускорении, кроме того тело удлиняется, разогревается, то есть начинает излучать в инфракрасном спектре. При пересечении порога 0,999 с, тело кардинально видоизменяется и начинает стремительный фазовый переход вплоть до лучевого состояния. Как следует из формулы Эйнштейна, взятой в полном виде, растущая масса итогового вещества складывается из масс, отделяющихся от тела в виде теплового, рентгеновского, оптического и других излучений, энергия каждого из которых описывается следующим членом в формуле. Таким образом, тело приблизившееся к скорости света начнет излучать во всех спектрах, расти в длину и замедляться во времени, утоньшаясь до планковской длины, то есть по достижении скорости с, тело превратится в бесконечно длинный и тонкий луч, двигающийся со скоростью света и состоящий из фотонов, не имеющих длины, а его бесконечная масса полностью перейдет в энергию. Поэтому такое вещество и называется лучевым.

В зависимости от условий тела могут находиться в жидком, твердом или газообразном состоянии. Эти состояния называются агрегатными состояниями вещества .

В газах расстояние между молекулами много больше размеров молекул. Если газу не мешают стенки сосуда, его молекулы разлетаются.

В жидкостях и твердых телах молекулы расположены ближе друг к другу и поэтому не могут удаляться далеко друг от друга.

Переход из одного агрегатного состояния в другое называется фазовым переходом .

Переход вещества из твердого состояния в жидкое называется плавлением , а температуру, при которой это происходит, – температурой плавления . Переход вещества из жидкого состояния в твердое называется кристаллизацией , а температуру перехода – температурой кристаллизации .

Количество теплоты, которое выделяется при кристаллизации тела либо поглощается телом при плавлении, отнесенное к единице массы тела, называется удельной теплотой плавления (кристаллизации) λ:

При кристаллизации выделяется такое же количество теплоты, какое поглощается при плавлении.

Переход вещества из жидкого состояния в газообразное называется парообразованием . Переход вещества из газообразного состояния в жидкое называется конденсацией . Количество теплоты, необходимое для парообразования (выделяющееся при конденсации):

Q = Lm ,
где L – удельная теплота парообразования (конденсации).

Парообразование, происходящее с поверхности жидкости, называется испарением . Испарение может происходить при любой температуре. Переход жидкости в пар, происходящий по всему объему тела, называется кипением , а температуру, при которой жидкость кипит, – температурой кипения .

Наконец, сублимация – это переход вещества из твердого состояния непосредственно в газообразное, минуя жидкую стадию.

Если прочие параметры внешней среды (в частности, давление) остаются постоянными, то температура тела в процессе плавления (кристаллизации) и кипения не изменяется.

Если количество молекул, покидающих жидкость, равно количеству молекул, возвращающихся в жидкость, то говорят, что наступило динамическое равновесие между жидкостью и ее паром. Пар, находящийся в динамическом равновесии со своей жидкостью, называется

Установлению идеального порядка в расположении атомов, т. е. образованию твердого тела, препятствуют тепловые движения, главной особенностью которых является, как мы знаем, хаотичность, беспорядочность. Поэтому для того, чтобы вещество могло находиться в твердом состоянии, его температура должна быть достаточно низкой - настолько низкой, чтобы энергия тепловых движений была меньше, чем потенциальная энергия взаимодействия атомов.

Вполне идеальным кристаллом, в котором все атомы находятся в равновесии и обладают минимальной энергией, тело может быть только при абсолютном нуле. В действительности все вещества становятся твердыми при значительно более высоких температурах. Исключение составляет только гелий, который остается жидким и при абсолютном нуле, но это связано с некоторыми квантовыми эффектами, о которых мы кратко скажем ниже.

В твердое состояние вещество может перейти как из жидкого, так и из газообразного состояния. И в том и в другом случае такой переход есть переход из состояния, лишенного симметрии, в состояние, в котором симметрия существует (это во всяком случае относится к дальнему порядку, существующему в кристаллах, но не существующему ни в жидких, ни в газообразных веществах). Поэтому переход в твердое состояние должен происходить скачком, т. е. при определенной температуре, в отличие от перехода газ - жидкость, который, как мы знаем, может происходить и непрерывным образом.

Рассмотрим сначала превращение жидкость-твердое тело. Процесс образования твердого тела при охлаждении жидкости есть процесс образования кристалла (кристаллизация), (и происходит он при определенной температуре температуре кристаллизации или отвердевания. Так как при таком превращении энергия уменьшается, то оно сопровождается выделением энергии в виде скрытой теплоты кристаллизации. Обратное превращение - плавление - также происходит скачком при тон же температуре и сопровождается поглощением энергии в виде

той теплоты плавления, равной по величине теплоте кристаллизации.

Это ясно видно из графика зависимости температуры охлаждающейся жидкости от времени, изображаемого на рис. 179 (кривая а). Участок 1 кривой а дает ход монотонного понижения температуры жидкости вследствие отвода тепла от нее. Горизонтальный участок 2 показывает, что при определенном значении температуры ее понижение прекращается, несмотря на то, что отвод тепла продолжается. Через некоторое время температура снова начинает понижаться (участок 3). Температура, соответствующая участку 2, это и есть температура кристаллизации. Выделяющееся при кристаллизации тепло компенсирует отвод тепла от вещества и поэтому понижение температуры временно прекращается. После окончания процесса кристаллизации температура, теперь уже твердого тела, вновь начинает понижаться.

Такой ход графика понижения температуры характерен для кристаллических тел. При охлаждении жидкостей, не кристаллизующихся (аморфных веществ), скрытая теплота не выделяется и график охлаждения представляет собой монотонную кривую без остановки охлаждения.

При обратном процессе перехода вещества из твердого состояния в жидкое (плавление) на кривой нагревания также наблюдается остановка в повышении температуры, вследствие поглощения скрытой теплоты плавления - теплоты, за счет которой происходит разрушение кристаллической решетки (кривая на рис. 179).

Для начала кристаллизации необходимо присутствие центра или центров кристаллизации. Такими центрами могли бы служить случайные скопления частиц жидкости, прилипших друг к другу, к которым могли бы присоединяться всё новые и новые частицы, пока вся жидкость не обратилась бы в твердое тело. Однако образование таких скоплений в самой жидкости затрудняется тепловыми движениями, которые их разрушают еще до того, как они успевают приобрести сколько-нибудь заметные размеры. Кристаллизация существенно облегчается, если в жидкости с самого начала присутствуют достаточно большие твердые частицы в виде пылинок и тел, которые становятся центрами кристаллизации.

Образование центров кристаллизации в самой жидкости облегчается, конечно, с понижениемтемпературы. Поэтому кристаллизация чистой жидкости, лишенной посторонних образований,

начинается обычно при температуре несколько более низкои, чем истинная температура кристаллизации. В обычных условиях в кристаллизующейся жидкости имеется много центров кристаллизации, так что в жидкости образуется множество кристалликов, срастающихся вместе, и затвердевшее вещество оказывается поликристаллическим.

Только в особых условиях, которые обычно трудно обеспечить, можно получить одиночный кристалл - монокристалл, вырастающий из единственного центра кристаллизации. Если при этом для всех направлений обеспечены одинаковые условия накопления частиц, то кристалл получается правильно ограненным соответственно его свойствам симметрии.

Переход жидкость - твердое тело, так же как и обратное превращение, является фазовым переходом, так как жидкое и твердое состояния можно рассматривать как две фазы вещества. Обе фазы при температуре кристаллизации (плавления) могут соприкасаться друг с другом, находясь в равновесии (лед, например, может плавать в воде, не плавясь), так же как могут находиться в равновесии жидкость и ее насыщенный пар.

Подобно тому как температура кипения зависит от давления, температура кристаллизации (и равная ей температура плавления) также зависит от давления, обычно возрастая с ростом давления. Растет она потому, что внешнее давление сближает атомы между собой, а для разрушения кристаллической решетки при плавлении атомы нужно отдалить друг от друга: при большем давлении для этого требуется большая энергия тепловых движений, т. е. более высокая температура.

На рис. 180 показана кривая зависимости температуры плавления (кристаллизации) от давления. Сплошная кривая делит всю область на две части. Область влево от кривой соответствует твердому состоянию, а область справа от кривой - жидкому состоянию. Любая же точка, лежащая на самой кривой плавления, соответствует равновесию твердой и жидкой фаз: при этих давлениях и температурах вещество в жидком и твердом состояниях находится в равновесии, соприкасаясь друг с другом, и при этом жидкость не твердеет, а твердое тело не плавится.

Пунктиром на рис. 180 показана кривая плавления для тех немногих веществ (висмут, сурьма, лед, германий), у которых при отвердевании объем не уменьшается, а увеличивается. У таких

веществ, естественно, температура плавления с повышением давления понижается.

Изменение температуры плавления связано с изменением давления соотношением Клапейрона - Клаузиуса:

Здесь - температура плавления (кристаллизации), и - соответственно молярные объемы жидкой и твердой фаз и молярная теплота плавления.

Эта формула справедлива и для других фазовых переходов. В частности, для случая испарения и конденсации формула Клапейрона-Клаузиуса была выведена в гл. VII [см. (105.6)].

Из формулы Клапейрона - Клаузиуса видно, что знак изменения температуры плавления с изменением давления определяется тем, какая из двух величин, или больше. Крутизна кривой зависит также от величины скрытой теплоты перехода чем меньше тем меньше изменяется температура плавления с давлением. В табл. 20 приведены значения удельной (т. е. отнесенной к единице массы) теплоты плавления для некоторых веществ.

Таблица 20 (см. скан) Удельная теплота плавления для некоторых веществ

Уравнение Клапейрона - Клаузиуса может быть написано и в таком виде:

Это уравнение показывает, как изменяется давление, под которым находятся обе равновесные фазы, при изменении температуры.

Твердое тело может образоваться не только путем кристаллизации жидкости, но и конденсацией газа (пара) в кристалл, минуя жидкую фазу. При этом также выделяется скрытая теплота перехода, которая, однако, всегда больше скрытой теплоты плавления. Ведь образование твердого тела при определенных температуре и давлении может произойти как непосредственно из газообразного состояния, так и путем предварительного ожижения, В обоих

случаях начальное и конечное состояния одинаковы. Одинакова, значит, и разность энергий этих состояний. Между тем во втором случае выделяется, во-первых, скрытая теплота конденсации при переходе из газообразного в жидкое состояние и, во-вторых, скрытая теплота кристаллизации при переходе из жидкого в твердое состояние. Отсюда следует, что скрытая теплота при непосредственном образовании твердого тела из газообразной фазы должна быть равна сумме теплоты конденсации и кристаллизации из жидкости. Это относится только к теплотам, измеренным при температуре плавления. При более низких температурах теплота конденсации из газа возрастает.

Обратный процесс испарения твердого тела называется обычно возгонкой или сублимацией. Испаряющиеся частицы твердого тела образуют над ним пар совершенно так же, как это происходит при испарении жидкости. При определенных давлении и температуре пар и твердое тело могут находиться в равновесии. Пар, находящийся в равновесии с твердым телом, также называется насыщенным паром. Как и в случае жидкости, упругость насыщенного пара над твердым телом зависит от температуры, быстро уменьшаясь с понижением температуры, так что у многих твердых тел при обычных температурах упругость насыщенного пара ничтожно мала.

На рис. 181 показан вид кривой зависимости упругости насыщенного пара от температуры. Эта кривая является линией равновесия твердой и газообразной фаз. Область слева от кривой соответствует твердому состоянию, справа от нее - газообразному. Возгонка, так же как и плавление, связана с разрушением решетки и требует затраты необходимой для этого энергии. Эта энергия проявляется как скрытая теплота возгонки (сублимации), равная, разумеется, скрытой теплоте конденсации.. Теплота возгонки равна поэтому сумме теплот плавления и парообразования.

В окружающем нас мире постоянно и непрерывно происходит огромное множество различных физических явлений и процессов. Одним из немаловажных можно считать процесс испарения. Существует несколько обязательных условий для данного явления. В этой статье мы разберем каждый из них более подробно.

Это процесс преобразования веществ в газообразное или парообразное состояние. Оно характерно только для консистенции. Однако нечто похожее наблюдается и у твердых тел, только называется данное явление сублимацией. Это можно заметить при тщательном наблюдении за телами. Например, кусок мыла с течением времени подсыхает и начинает трескаться, это объясняется тем, что капельки воды в его составе испаряются и переходят в газообразное состояние H 2 O.

Определение в физике

Испарение - это эндотермический процесс, при котором источником поглощаемой энергии служит теплота Она включает в себя две составляющие:

  • определенное необходимое для преодоления молекулярных сил притяжения, когда происходит разрыв между соединенными молекулами;
  • теплота, необходимая при работе расширения молекул в процессе превращения жидких веществ в пар или газ.

Как это происходит?

Переход вещества из жидкого состояния в газообразное может происходить двумя способами:

  1. Испарение - это процесс, при котором с поверхности жидкого вещества улетучиваются молекулы.
  2. Кипение - процесс парообразования из жидкости путем доведения температуры до удельной теплоты кипения вещества.

Несмотря на то что оба эти явления преобразуют жидкое вещество в газ, между ними есть существенные различия. Кипение - это активный процесс, который совершается только при определенной температуре, тогда как испарение происходит при любых условиях. Еще одно отличие заключается в том, что кипение характерно для всей толщи жидкости, а второе явление возникает только на поверхности жидких веществ.

Молекулярно-кинетическая теория испарения

Если рассматривать данный процесс на молекулярном уровне, то он происходит следующим образом:

  1. Молекулы в жидких веществах находятся в постоянном хаотичном движении, все они имеют абсолютно разные скорости. Между тем частицы притягиваются друг к другу благодаря силам притяжения. Каждый раз когда они сталкиваются друг с другом, их скорости меняются. В какой-то момент у некоторых развивается очень большая скорость, позволяющая преодолеть силы притяжения.
  2. Эти элементы, которые оказались на поверхности жидкости, обладают такой кинетической энергией, что способны преодолевать межмолекулярные связи и покидать жидкость.
  3. Именно эти самые быстрые молекулы вылетают с поверхности жидкого вещества, причем происходит этот процесс постоянно и непрерывно.
  4. Оказавшись в воздухе, они превращаются в пар - называется это парообразованием.
  5. Как следствие этого, оставшихся частиц становится все меньше. Этим и объясняется остывание жидкости. Вспомните, как в детстве нас учили дуть на горячую жидкость, чтобы она скорее остыла. Получается, что мы ускоряли процесс и спад температуры происходил намного быстрее.

От каких факторов зависит?

Существует множество условий, необходимых для возникновения данного процесса. Оно происходит отовсюду, где присутствуют частицы воды: это и озера, моря, реки, все влажные предметы, покровы тел животных и людей, а также листья растений. Можно сделать вывод, что испарение - это весьма значимый и незаменимый процесс для окружающего мира и всех живых существ.

Вот какие факторы оказывают влияние на данное явление:

  1. Скорость испарения напрямую зависит от состава самой жидкости. Известно, что у каждой из них существуют свои особенности. Например, те вещества, у которых теплота парообразования ниже, будут преобразовываться быстрее. Сравним два процесса: испарение спирта и обычной воды. В первом случае преобразование в газообразное состояние происходит быстрее, потому что удельная теплота парообразования и конденсации у спирта равна 837 кДж/кг, а у воды почти в три раза больше - 2260 кДж/кг.
  2. Скорость также зависит от изначальной температуры жидкости: чем она больше, тем быстрее образуется пар. В качестве примера возьмем стакан воды, когда внутри сосуда находится кипяток, то парообразование происходит с гораздо большей скоростью, нежели когда температура воды ниже.
  3. Еще один фактор, определяющий скорость протекания данного процесса, - это площадь поверхности жидкости. Вспомните, что в тарелке большого диаметра горячий суп остывает быстрее, чем в маленьком блюдце.
  4. Скорость распространения веществ в воздушной среде во многом определяет и скорость испарения, т. е. чем быстрее происходит диффузия, тем скорее происходит парообразование. Например, при сильных ветрах капельки воды быстрее испаряются с поверхности озер, рек и водохранилищ.
  5. Температура воздуха в помещении также играет немаловажную роль. Подробнее об этом мы поговорим чуть ниже.

Какова роль влажности воздуха?

Вследствие того что процесс испарения происходит отовсюду непрерывно и постоянно, то в воздухе всегда присутствуют частички воды. В молекулярном виде они выглядят как группа элементов H 2 O. Жидкости могут испаряться в зависимости от показателя объема водяных паров в атмосфере, этот коэффициент и называется влажностью воздуха. Она бывает двух видов:

  1. Относительная влажность - это отношение количества водяных паров в воздухе к плотности насыщенного пара при той же температуре в процентном соотношении. Например, показатель 100 % говорит о том, что атмосфера полностью насыщена молекулами H 2 O.
  2. Абсолютная же характеризует плотность водяных паров в воздушной среде, обозначается буквой f и показывает, какая масса молекул воды содержится в 1м 3 воздуха.

Связь процесса испарения и влажности воздуха можно определить следующим образом. Чем меньше показатель тем быстрее будет происходить испарение с поверхности земли и других предметов.

Испарение различных веществ

У различных веществ этот процесс протекает по-разному. Например, испарение спирта происходит быстрее, чем у многих жидкостей благодаря его маленькой удельной теплоте парообразования. Зачастую подобные жидкие вещества называются летучими, потому что водяные пары буквально улетучиваются из них практически при любых температурах.

Спирт также может испаряться даже при комнатной температуре. В процессе готовки вина или водки спирт прогоняется через самогонный аппарат, только достигнув температуры кипения, она приблизительно равняется 78 градусам. Однако реальная температура испарения спирта будет немного больше, потому как в исходном продукте (например, браге) он представляет собой соединения с различными ароматическими маслами и водой.

Конденсация и сублимация

Следующее явление можно наблюдать каждый раз, когда закипает вода в чайнике. Обратите внимание, что при кипении вода переходит из жидкого состояния в газообразное. Происходит это таким образом: горячая струя водяного пара с большой скоростью вылетает из чайника через его носик. При этом образовавшийся пар виден не прямо у выхода из носика, а на небольшом расстоянии от него. Данный процесс называется конденсацией, т. е. водяные пары сгущаются до такой степени, что становятся видны для наших глаз.

Испарение твердого тела называется сублимацией. При этом они переходят из агрегатного состояния в газообразное, минуя стадию жидкости. Самый известный случай сублимации связан с кристаллами льда. В первоначальном виде лед является твердым веществом, при температуре выше 0° он начинает таять, принимая жидкое состояние. Однако в некоторых случаях при отрицательных температурах лед переходит в парообразную форму, минуя жидкую фазу.

Влияние испарения на человеческий организм

Благодаря испарению в нашем теле происходит терморегуляция. Происходит данный процесс через систему самоохлаждения. В жаркий знойный день человеку, который занимается определенным физическим трудом, становится очень жарко. Это означает, что в нем увеличивается внутренняя энергия. А как известно, при температуре выше 42° белок в крови человека начинает сворачиваться, если вовремя не остановить этот процесс, он приведет к смерти.

Система самоохлаждения устроена как раз таким образом, чтобы регулировать температуру для нормальной жизнедеятельности. Когда температура становится предельно допустимой, через поры на коже начинается активное потоотделение. А затем уже с поверхности кожи происходит испарение, которое поглощает лишнюю энергию тела. Иными словами, испарение - это процесс, способствующий охлаждению организма до нормального состояния.


Close