Принцип действия и основные свойства лазера.

Квантовую электронику можно определить как раздел электроники, в котором фундаментальную роль играют явления квантового характера. Настоящая книга посвящена рассмотрению частного аспекта квантовой электроники, а именно описанию физических принципов действия лазеров и их характеристик. Прежде чем заняться детальным обсуждением предмета, целесообразно уделить некоторое внимание элементарному рассмотрению идей, на которых основаны лазеры.

В лазере используются три фундаментальных явления, происходящих при взаимодействии электромагнитных волн с веществом, а именно процессы спонтанного и вынужденного излучения и процесс поглощения.

Принцип работы лазера

Рассмотрим в какой-либо среде два произвольных энергетических уровня 1 и 2 с соответствующими населенностями N 1 и N 2 . Пусть в этой среде в направлении оси z распространяется плоская волна с интенсивностью, соответствующей плотности потока фотонов F. Тогда в соответствии с выражениями (1.3) - (1.6) изменение плотности потока dF, обусловленное как процессами вынужденного излучения, так и процессами поглощения, в слое dz (заштрихованная область на рис. 1.2) определяется уравнением

dF=σF(N 2 -. N 1) (1.7)

Из уравнения (1.7) следует, что в случае N 2 > N 1 среда ведет себя как усиливающая (т. е. dF/dz > 0), а в случае N 2 <. N 1 - как поглощающая. Известно, что при термодинамическом равновесии населенности энергетических уровней описываются статистикой Больцмана. Так, если N 2 e и N 1 e - населенности двух уровней при термодинамическом равновесии, то мы имеем

N 2 e /N 1 e = exp[-(E 2 -E 1)/kT], (1.8)

где k - постоянная Больцмана, а T - абсолютная температура среды. Таким образом, мы видим, что в случае термодинамического равновесия N 2 <. N 1 . В соответствии с (1.7) среда поглощает излучение на частоте ν, что обычно и происходит. Однако если удастся достигнуть неравновесного состояния, для которого N 2 >. N 1 , то среда будет действовать как усилитель. В этом случае будем говорить, что в среде существует инверсия населенностей, имея в виду, что разность населенностей (N 2 -. N 1 > 0) противоположна по знаку той, которая существует в обычных условиях (N 2 -. N 1 < 0). Среду, в которой осуществлена инверсия населенностей, будем называть активной средой.

Если частота перехода ν = (Е 2 - Е 1)/h попадает в СВЧ-диапазон, то соответствующий усилитель называется мазером. Слово мазер (англ. maser) образовано из начальных букв слов следующей фразы: microwave amplification by stimulated emission of radiation - усиление микроволн вынужденным испусканием излучения. Если же частота перехода ν соответствует оптическому диапазону, то усилитель называется лазером. Слово лазер (англ. laser) образовано аналогично, только начальная буква «м», происходящая от первой буквы в слове microwave, заменена буквой «л», происходящей от слова light (свет).

Для того чтобы усилитель превратить в генератор, необходимо ввести подходящую положительную обратную связь. В СВЧ-диапазоне это достигается тем, что активную среду помещают в объемный резонатор, имеющий резонанс при частоте ν. В лазере обратную связь обычно получают размещением активной среды между двумя зеркалами с высоким коэффициентом отражения (например, между плоскопараллельными зеркалами, как показано на рис. 1.3. Такая система зеркал обычно именуется резонатором Фабри-Перо оптическим резонатором или открытым резонатором). В этом случае плоская электромагнитная волна, распространяющаяся в направлении, перпендикулярном зеркалам, будет поочередно отражаться от них, усиливаясь при каждом прохождении через активную среду. Если одно из двух зеркал сделано частично прозрачным, то на выходе системы можно выделить пучок полезного излучения Однако как в мазерах, так и в лазерах генерация возможна лишь при выполнении некоторого порогового условия. Например, в лазере генерация начинается тогда, когда усиление активной среды компенсирует потери в нем (скажем, потери, обусловленные частичным выходом излучения из резонатора через зеркало). В соответствии с выражением (1.7) усиление излучения за один проход в активной среде (т. е. отношение выходной и входной плотностей потока фотонов) равно exp[σ(N 2 - N 1)∙l], где l- длина активной среды. Если потери в резонаторе определяются только пропусканием зеркал, то порог генерации будет достигнут при выполнении условия

R 1 R 2 (2σ(N 2 - N 1)∙l) >1 (1.9)

где R 1 и R 2 - коэффициенты отражения зеркал по интенсивности. Это условие показывает, что порог достигается тогда, когда инверсия населенностей приближается к некоторому критическому значению, называемому критической инверсией и определяемому соотношением

(N 2 - N 1) кр =-ln(R 1 R 2)/2σl (1.10)

Как только достигнута критическая инверсия, генерация разовьется из спонтанного излучения. Действительно, фотоны, которые спонтанно испускаются вдоль оси резонатора, будут усиливаться. Этот механизм и лежит в основе лазерного генератора, называемого обычно просто лазером. Однако теперь слово лазер широко применяется к любому устройству, испускающему вынужденное излучение - будь то в дальнем или ближнем ИК-, УФ- и даже в рентгеновском диапазонах. В таких случаях мы будем говорить соответственно об инфракрасных, ультрафиолетовых и рентгеновских лазерах. Заметим также, что названия твердотельный, жидкостный и газовый лазер определяются агрегатным состоянием активной среды.

Схемы накачки

Рассмотрим задачу о том, каким образом в данной среде можно получить инверсию населенностей. На первый взгляд может показаться, что инверсию можно было бы создать при взаимодействии среды с достаточно сильной электромагнитной волной частоты v, определяемой выражением (1.1). Поскольку при термодинамическом равновесии уровень 1 заселен больше, чем уровень 2, поглощение преобладает над вынужденным излучением, т. е. под действием падающей волны происходит больше переходов 1 - 2, чем переходов 2-1, и можно надеяться осуществить таким путем инверсию населенностей. Однако нетрудно заметить, что такой механизм работать не будет (по крайней мере в стационарных условиях). Когда наступят условия, при которых населенности уровней окажутся одинаковыми (N 2 =N 1), процессы вынужденного излучения и поглощения начнут компенсировать друг друга и в соответствии с (1.7) среда станет прозрачной. В такой ситуации обычно говорят о двухуровневом насыщении.

Рис. 1.4. Трехуровневая (а) и четырехуровневая (б) схемы лазера.

Таким образом, используя только два уровня, невозможно получить инверсию населенностей. Естественно, возникает вопрос: можно ли это осуществить с использованием более чем двух уровней из неограниченного набора состояний данной атомной системы? Мы увидим, что в этом случае ответ будет утвердительным и можно будет соответственно говорить о трех и четырехуровневых лазерах в зависимости от числа рабочих уровней (рис. 1.4). В трехуровневом лазере (рис. 1.4, а) атомы каким-либо способом переводятся с основного уровня 1 на уровень 3. Если выбрана среда, в которой атом, оказавшийся в возбужденном состоянии на уровне 3, быстро переходит на уровень 2, то в такой среде можно получить инверсию населенностей между уровнями 2 и 1. В четырехуровневом лазере (рис. 1.4,6) атомы также переводятся с основного уровня (для удобства будем называть его нулевым) на уровень 3. Если после этого атомы быстро переходят на уровень 2, то между уровнями 2 и 1 может быть получена инверсия населенностей. Когда в таком четырехуровневом лазере возникает генерация, атомы в процессе вынужденного излучения переходят с уровня 2 на уровень 1. Поэтому для непрерывной работы четырехуровневого лазера необходимо, чтобы частицы, оказавшиеся на уровне 1, очень быстро переходили на нулевой уровень.

Мы показали, каким образом можно использовать три или четыре энергетических уровня какой-либо системы для получения инверсии населенностей. Будет ли система работать по трех- или четырехуровневой схеме (и будет ли она работать вообще!), зависит от того, насколько выполняются рассмотренные выше условия. Может возникнуть вопрос: зачем использовать четырехуровневую схему, если уже трехуровневая оказывается весьма эффективной для получения инверсии населенностей? Однако дело в том, что в четырехуровневом лазере инверсию получить гораздо легче. Чтобы убедиться в этом, прежде всего заметим, что разности энергий между рабочими уровнями лазера (рис. 1.4) обычно много больше, чем kT, и в соответствии со статистикой Больцмана [см., например, формулу (1.8)] почти все атомы при термодинамическом равновесии находятся в основном состоянии. Если мы теперь обозначим число атомов в единице объема среды как Nt, то в случае трехуровневой системы эти атомы первоначально будут находиться на уровне 1. Переведем теперь атомы с уровня 1 на уровень 3. Тогда с этого уровня атомы будут релаксировать с переходом на более низкий уровень 2. Если такая релаксация происходит достаточно быстро, то уровень 3 остается практически незаселенным. В этом случае, для того чтобы населенности уровней 1 и 2 сделать одинаковыми, на уровень 2 нужно перевести половину атомов Nt, расположенных первоначально на основном уровне. Инверсию населенностей будет создавать любой атом, переведенный на верхний уровень сверх этой половины от общего числа атомов. Однако в четырехуровневом лазере, поскольку уровень 1 первоначально был также незаселенным, любой атом, оказавшийся в возбужденном состоянии, будет давать вклад в инверсию населенностей. Эти простые рассуждения показывают, что по возможности следует искать активные среды, работающие по четырехуровневой схеме. Для получения инверсии населенностей возможно, разумеется, использование большего числа энергетических уровней.

Процесс, под действием которого атомы переводятся с уровня 1 на уровень 3 (в трехуровневой схеме лазера), называется накачкой. Имеется несколько способов, с помощью которых можно реализовать этот процесс на практике, например при помощи некоторых видов ламп, дающих достаточно интенсивную световую волну, или посредством электрического разряда в активной среде.

Свойства лазерных пучков

Лазерное излучение характеризуется чрезвычайно высокой степенью монохроматичности, когерентности, направленности и яркости. К этим свойствам можно добавить генерацию световых импульсов малой длительности. Это свойство, возможно, менее фундаментально, но оно играет очень важную роль. Рассмотрим теперь эти свойства подробнее.

1.4.1. Когерентность .

Для любой электромагнитной волны можно определить два независимых понятия когерентности, а именно пространственную и временную когерентность. Для того чтобы определить пространственную когерентность, рассмотрим две точки P 1 и Р 2 , выбранные с таким условием, что в момент времени t = 0 через них проходит волновой фронт некоторой электромагнитной волны, и пусть E 1 (t) и Е 2 (t) - соответствующие электрические поля в этих точках. Согласно нашему условию, в момент времени t = 0 разность фаз электрических полей в данных точках равна нулю. Если эта разность фаз остается равной нулю в любой момент времени t > 0, то говорят, что между двумя точками имеется полная когерентность. Если такое условие выполняется для любых пар точек волнового фронта, то данная волна характеризуется полной пространственной когерентностью. Практически для любой точки Р 1 , если мы имеем достаточную корреляцию фаз, точка Р 2 должна располагаться внутри некоторой конечной области, включающей точку P 1 . В этом случае говорят, что волна характеризуется частичной пространственной когерентностью, причем для любой точки Р можно соответственно определить область когерентности.

Для того чтобы определить временную когерентность, рассмотрим электрическое поле волны в данной точке Р в моменты времени t и t + τ. Если для данного интервала времени τ разность фаз колебаний поля остается одной и той же в любой момент времени t, то говорят, что существует временная когерентность на интервале времени τ. Если такое условие выполняется для любого значения τ, то волна характеризуется полной временной когерентностью. Если же это имеет место лишь для определенного интервала времени т, такого, что 0 < τ < τ 0 , то волна характеризуется частичной временной когерентностью с временем когерентности τ 0 . Представление о временной когерентности непосредственно связано с монохроматичностью. Электромагнитная волна с временем когерентности, равным τ 0 , имеет спектральную ширину Δν ~ 1/ τ 0 . В случае нестационарного пучка (например, лазерного пучка, полученного в результате модуляции добротности или синхронизации мод) время когерентности не связано обратно пропорциональной зависимостью с шириной полосы генерации и фактически может быть много больше, чем величина 1/ Δν.

Следует заметить, что понятия временной и пространственной когерентности на самом деле не зависят друг от друга. Действительно, можно привести примеры волны, имеющей полную пространственную когерентность, но лишь частичную временную когерентность, и наоборот. Понятия пространственной и временной когерентности дают описание лазерной когерентности только в первом порядке.

Направленность

Это свойство является простым следствием того, что активная среда помещена в резонатор, например плоскопараллельный резонатор, показанный на рис. 1.3. В таком резонаторе могут поддерживаться только такие электромагнитные волны, которые распространяются вдоль оси резонатора или в очень близком к оси направлении. Для более глубокого понимания свойств направленности лазерных пучков (или в общем случае любой электромагнитной волны) удобно рассмотреть отдельно случаи, когда пучок обладает полной пространственной когерентностью и когда он имеет частичную пространственную когерентность.

Рассмотрим вначале пучок с полной пространственной когерентностью. Даже в этом случае пучок с конечной апертурой неизбежно расходится вследствие дифракции. Пусть пучок с постоянной интенсивностью и плоским волновым фронтом падает на экран, в котором имеется отверстие диаметром D. Согласно принципу Гюйгенса волновой фронт в некоторой плоскости Р за экраном может быть получен путем суперпозиции элементарных волн, излученных каждой точкой отверстия. Из-за конечного размера D отверстия пучок имеет конечную расходимость θ. Ее значение можно вычислить с помощью теории дифракции. Для произвольного распределения амплитуды имеем

θ=βλ/D (1.11)

здесь λ - длина волны, a D - диаметр пучка. β- числовой коэффициент порядка единицы, значение которого зависит от формы распределения амплитуд и способа, каким определяются расходимость и диаметр пучка (для пучка с гауссовым распределением интенсивности по сечению, образующегося в одномодовом резонаторе β=0,61). Пучок, расходимость которого описывается выражением (1.11), называется дифракционно-ограниченным. Если волна имеет частичную пространственную когерентность, то ее расходимость будет больше, чем минимальное значение расходимости, обусловленное дифракцией. При соответствующих условиях работы выходной пучок лазера можно сделать дифракционно-ограниченным.

Яркость

Определим яркость какого-либо источника электромагнитных волн как мощность излучения, испускаемого с единицы поверхности источника в единичный телесный угол. Точнее говоря, рассмотрим элемент площади dS поверхности источника в точке О (рис. 1.7). Тогда мощность dP, излучаемая элементом поверхности dS в телесный угол dΩ в направлении 00", может быть записана следующим образом:

dP = BcosθdSdΩ (1.12)

здесь θ - угол между направлением 00" и нормалью к поверхности. Величина В зависит, как правило, от полярных координат θ и φ, т. е. от направления 00" и от положения точки О. Эта величина В на-зывается яркостью источника в точке О в направлении 00".

Яркость лазера даже небольшой мощности (например, несколько милливатт) на несколько порядков превосходит яркость обычных источников. Это свойство в основном является следствием высокой направленности лазерного пучка.

Импульсы малой длительности

При помощи специального метода, называемого синхронизацией мод, можно получить импульсы света, длительность которых приблизительно обратно пропорциональна ширине линии перехода 2-1. Например, в газовых лазерах, ширина линии усиления которых относительно узкая, можно получать импульсы излучения длительностью --¦ 0,1 - 1 нс. Такие импульсы не рассматриваются как очень короткие, поскольку даже некоторые лампы-вспышки способны излучать световые импульсы длительностью менее 1 нс. Однако у твердотельных или жидкостных лазеров ширины линий усиления могут быть в 10 3 - 10 5 раз больше, чем у газовых лазеров, и поэтому генерируемые ими импульсы оказываются значительно короче (от 1 пс до ~5 фс). Получение столь коротких импульсов света привело к новым возможностям в лазерных исследованиях и их применениях.

Свойство генерации коротких импульсов, которое подразумевает концентрацию энергии во времени, в некотором смысле аналогично свойству монохроматичности, означающему концентрацию энергии в узком диапазоне длин волн. Однако генерация коротких импульсов является, по-видимому, менее фундаментальным свойством, чем монохроматичность. В то время как любой лазер можно в принципе изготовить таким, что он будет генерировать достаточно монохроматическое излучение, короткие импульсы можно получать лишь от лазеров с широкой линией излучения, т. е. на практике только от твердотельных или жидкостных лазеров. Газовые же лазеры, обладающие более узкими линиями усиления, лучше всего подходят для генерации высокомонохроматического излучения.

Ширина линии.

Однородное уширение.

Любые процессы, сокращающие время жизни частиц на уровнях, приводят к уширению линий соответствующих переходов. Действительно, определение энергии состояния должно про­водиться за время, не превышающее время жизни в этом состо­янии т. А тогда неточность определения энергии в соответствии с соотношением неопределенностей «энергия - время»

ΔЕΔt ≥ ђ (1.13)

не может быть меньше ђ /τ. Неопределенность энергии состояния приводит к неопределенности частоты перехода, равной 1/2πτ. Постоянная времени τ является мерой времени, необходимого для того, чтобы возбужденная система отдала свою энергию. Значе­ние т определяется скоростями спонтанного излучения и безызлучательных релаксационных переходов.

В отсутствие внешних воздействий спонтанное излучение оп­ределяет время жизни состояния. Поэтому наименьшая возмож­ная, так называемая естественная ширина линии Δν 0 определяет­ся вероятностью спонтанного перехода А:

Δν 0 =А/2π (1.14)

Естественная ширина, как правило, существенна только на очень высоких частотах (А ~ ν 3) и для хорошо разрешенных перехо­дов. Обычно влиянием спонтанного излучения на ширину линии можно пренебречь, так как в реальных условиях релаксационные переходы более эффективно сокращают время жизни.

Как уже говорилось, в системах с дискретными уровнями энергии, кроме индуцированных и спонтанных переходов, суще­ственную роль играют релаксационные безызлучательные перехо­ды. Эти переходы возникают в результате взаимодействий кван­товой частицы с ее окружением. Механизм процессов этих взаи­модействий сильно зависит от вида конкретной системы. Это мо­жет быть взаимодействие между ионом и решеткой кристалла; это могут быть соударения между молекулами газа или жидко­сти и т. д. В конечном счете результатом действия релаксацион­ных процессов является обмен энергией между подсистемой рас­сматриваемых частиц и тепловыми движениями во всей системе в целом, приводящий к термодинамическому равновесию между ними.

Обычно время установления равновесия, время жизни части­цы на уровне, обозначается Т 1 и называется продольным време­нем релаксации. Такая терминология отвечает традиции, устано­вившейся при исследовании явлений ядерного магнитного резо­нанса (ЯМР) и электронного парамагнитного резонанса (ЭПР). Продольная релаксация соответствует движению вектора высоко­частотной намагниченности системы частиц вдоль направления внешнего постоянного магнитного поля. Существует еще попе­речное время релаксации Т 2 , которое соответствует движению вектора намагниченности в плоскости, перпендикулярной направ­лению внешнего постоянного поля.

Время Т 2 является мерой того отрезка време­ни, в течение которого частицы приобретут случайные по отно­шению друг к другу фазы. Любой процесс, вносящий вклад во время релаксации Т 2 т. е. любой процесс потери энергии частицами, приводит к потере фа­зы. Следовательно, Т 2 < Т 1 . Так как время Т 2 является самым коротким временем ре­лаксации, то именно оно и определяет ширину линии перехо­да. Конечность времени жизни частицы в возбужденном энергетическом состоянии ведет к уширению уровней энергии. Излучение с уширенных уровней приобретает спектральную ши­рину. Наиболее общим, фундаментальным механизмом, ограничи­вающим сверху время жизни частицы на возбужденном уровне, является спонтанное излучение, которое должно, таким образом, иметь спектральную ширину, соответствующего скорости актов спонтанного распада.

Квантовая электродинамика позволяет вычислить спектраль­ное распределение квантов спонтанного излучения, исходящих с уровня шириной

ΔЕ = ђ /τ 0 . (1.15)

Контур линии спонтанного излучения оказывается имеющим так называемую лоренцеву форму с шириной

Δν л = ΔЕ / ђ = 1/2πτ 0 (1.16).

Лоренцева форма линии определяется форм-фактором

q(ν) (1.17)

и имеет вид резонансной кривой с максимумом на частоте ν =ν 0 , спадающей до уровня половины пиковой величины при ча­стотах ν=ν 0 ±Δν л /2. Очевидно, что полная ширина кривой на половине максимальной величины составляет Δν л.

Если принимать во внимание возможность спонтанного распа­да не только верхнего из двух рассматриваемых уровней энер­гии, но и нижнего, когда нижний уровень не является основным, то под Δν л, входящей в формулу (1.17), следует понимать вели­чину, определяемую суммой скоростей распада этих уровней

Δν л =1/2πτ 01 +1/2πτ 02 (1.18)

Уширение линии, обусловленное конечностью времени жизни состояний, связанных рассматриваемым переходом, называется однородным. Каждый атом, находящийся в соответствующем со­стоянии, излучает при переходе сверху вниз линию с полной ши­риной Δν л и спектральной формой q(ν). Аналогично каждый атом, находящийся в соответствующем нижнем состоянии, поглощает при переходе снизу вверх излучение в спектре с полной шири­ной Δν л и в соответствии со спектральной зависимостью q(ν). Не­возможно приписать какую-либо определенную спектральную компоненту в спектре q(ν) какому-то определенному атому. При однородном уширении вне зависимости от его природы спект­ральная зависимость q(ν)есть единая спектральная характери­стика как одного атома, так и всей совокупности атомов. Измене­ние этой характеристики, в принципе возможное при том или ином воздействии на ансамбль атомов, происходит одновременно и оди­наковым образом для всех атомов ансамбля.

Примерами однородного уширения являются естественная ши­рина линии и столкновительное уширение в газах.

Неоднородное уширение.

Экспериментально на­блюдаемые спектральные линии могут явиться бесструктурной суперпозицией нескольких спектрально неразрешимых однородно уширенных линий. В этих случаях каждая частица излучает или поглощает не в пределах всей экспериментально наблюдаемой линии. Такая спектральная линия называется неоднородно уши­ренной. Причиной неоднородного уширения может быть любой процесс, приводящий к различию в условиях излучения (погло­щения) для части одинаковых атомов исследуемого ансамбля ча­стиц, или наличие в ансамбле атомов с близкими, но различны­ми спектральными свойствами (сверхтонкая структура того или иного вида), однородно уширенные спектральные линии которых перекрываются лишь частично. Термин «неоднородное уширение» возник в спектроскопии ЯМР, в которой уширение этого типа происходило из-за неоднородности внешнего намагничивающего поля в пределах исследуемого образца.

Классическим примером неоднородного упшрения является доплеровское уширение, характерное для газов при малых дав­лениях и (или) высоких частотах.

Атомы (молекулы, ионы) газа находятся в тепловом движе­нии. Доплер-эффект первого порядка приводит к смещению час­тоты излучения частиц, летящих на наблюдателя со скоростью и, на величину ν 0 u/с, где ν 0 - частота излучения покоящейся части­цы, а с - скорость света. Естественное уширение превращает из­лучение на частоте ν 0 в спектральную линию, но это уширение однородно, и частотный сдвиг ν 0 и/с испытывает вся линия. Так как частицы газа движутся с различными скоростями, то частот­ные сдвиги их излучения различны, а суммарная форма линии газа в целом определяется распределением частиц по скоростям. Последнее верно, строго говоря, если естественная ширина линии много уже доплеровских сдвигов частоты, что, как правило, име­ет место. Тогда, если обозначить через р(и) функцию распреде­ления частиц по скоростям, форм-фактор доплеровской линии q(ν)оказывается связанным с р(и) простым соотношением:

ν = ν 0 (1+u/с) ). (1.20)

Следовательно, и = с(ν - ν 0 )/ ν 0 и du = c dν . При максвелловском распределении частиц по скоростям

(1.21)

где средняя тепловая скорость

Здесь k - постоянная Больцмана, Т - температура газа, т - масса атома (молекулы) газа. Комбинируя (1.20) и (1.21), лег­ко получить q(ν) в виде

, (1.22)

где Δν T =ν 0 u 0 /c - ширина спектральной линии.

Линия, форма которой определяется форм-фактором (1.22), назы­вается доплеровски уширенной линией. Ее форма описывается функцией Гаусса и симметрична относитель­но центральной частоты ν 0 . Спад кривой q(ν) (1.22) при сильной отстройке от ν 0 происходит гораздо более круто, чем в случае лоренцева контура линии (1.17). Около центральной частоты гауссо­ва кривая более полога. Очевидно, что ее ширина определяется параметром Δν T . При удалении от центра кривой на Δν T интен­сивность падает в е раз.


AИГ-Nd-лазер.

Рис. 2.1. Лазерно активные переходы в кристалле АИГ - Nd.

а - схема энергетических уровней; б - зависимость интенсивности люминесценции (в произвольных единицах) от длины волны.

АИГ-Nd-лазер принадлежит к твердотельным лазерам с оптической накачкой. Лазерно активными веществами служат синтетические кристаллы иттрий-алюминиевого граната (Y 3 Al 5 O 12), содержащие ионы Nd 3+ в объемной концентрации, приблизительно равной 1,5 %. Более высокие концентрации невозможны вследствие различия в радиусах ионов Nd 3+ и Y 3+ . АИГ-кристаллы имеют кубическую решетку и поэтому являются оптически изотропными. На рис. 2.1, а показана схема уровней энергии иона Nd 3+ , находящегося в электрическом поле кристалла. Из левой части рис. 2.1, а видно, что схема относится к четырехуровневому лазеру.

Уровни 4 F 3/2 и 4 I 11/2 играют роль верхнего и нижнего лазерных уровней. Выше уровня 4 F 3/2 расположена целая последовательность уровней накачки или полос накачки, с которых возбужденные ионы благодаря взаимодействию с решеткой быстро переходят на верхний лазерный уровень. Нижний лазерный уровень находится выше основного уровня на величину энергии, которая много больше kT. Поэтому при тепловом равновесии этот уровень почти не заселен. Уровни 4 F 3/2 и 4 I 11/2 расщепляются в кристаллическом поле, вследствие чего становятся возможными многие переходы, показанные в правой части рис. 2.1. (Соответствующие расщепления других уровней не показаны.) Наиболее интенсивный переход наблюдается при 1,0641 мкм. Поперечное сечение этого перехода равно 8,8-10~~23 м2, излучательное время жизни верхнего уровня равно 230 мкс и выход люминесценции равен 0,995. При комнатной температуре переходы однородно уширены в результате взаимодействия с колебаниями решетки. Вследствие регулярности структуры кристалла неоднородное уширение пренебрежимо мало, тогда как в системах на неодимовых стеклах оно является доминирующим. Главный лазерный переход имеет ширину линии Δν≈120 ГГц. Для накачки АИГ-Nd-лазера наиболее подходит криптоновая дуговая лампа, поскольку ее полосы излучения хорошо согласуются с уровнями накачки. На рис. 2.2 представлена схема накачки. Накачка осуществляется в двойном эллиптическом отражателе, изготовленном из материала с высоким коэффициентом отражения. Цилиндрический АИГ-стержень находится на общей фокальной линии. Обе криптоновые лампы помещаются на двух других фокальных линиях. Для охлаждения системы стержень и лампы омываются потоком воды. В связи с хорошей теплопроводностью материала и его релаксационными свойствами, а также благодаря эффективному охлаждению АИГ-лазер может работать в режиме высоких мощностей излучения (до 102 Вт) в непрерывном режиме или с высокими частотами следования импульсов (приблизительно до 100 Гц) и с энергиями в импульсе от 0,1 до 1 Дж.

Кристалл АИГ имеет высокий показатель преломления (n(1,064 мкм) = 1,818). Поэтому на концевых поверхностях происходит довольно сильное френелевское отражение лазерного излучения. Его можно существенно уменьшить путем диэлектрического просветления или посредством скашивания стержней под углом Брюстера. Однако часто с этими потерями приходится мириться, что допустимо благодаря большому усилению в веществе. Но тогда необходимо концевые поверхности отполировать под малым углом наклона друг относительно друга (по меньшей мере около 1°), чтобы они не образовали лазерный резонатор или вторичный резонатор внутри главного резонатора.

Рис. 2.2. Установка для накачки с двойным эллиптическим отражателем. 1 - лампы; 2 - АИГ - Nd-стержень; 3 - отражатель; 4 - водяное охлаждение.

Для генерации ультракоротких световых импульсов с помощью АИГ: Nd-лазера успешно применяются различные методы. Для лазера с непрерывной накачкой применяется преимущественно метод активной синхронизации мод с использованием акустооптических или электрооптических модуляторов. В случае АИГ: Nd-лазера с импульсной накачкой чаще всего с помощью пассивной синхронизации создается такой режим, при котором лазер испускает цуг ультракоротких импульсов. АИГ: Nd-лазеры в непрерывном и импульсном режимах часто служат источниками света для генерации высших гармоник, а также для параметрической генерации.

Лазеры на красителях

Органические красители в растворе отличаются высокими значениями поперечных сечений поглощения и испускания, а также широкими полосами. Они пригодны как активные вещества для лазеров с перестраиваемой длиной волны.

На системы синглетных и триплетных электронных уровней накладываются колебательные уровни. Вследствие большого числа колебательных степеней свободы и сильного уширения линий в жидкостях отдельные колебательные переходы по большей части остаются совсем неразрешенными, так что возникает однородная спектральная полоса.

Лазер на красителе наиболее часто описывается как четырехуровневый лазер. Под действием света накачки происходят переходы на возбужденные колебательные уровни состояния S 1 в соответствии с принципом Франка-Кондона. Колебательная дезактивация состояния S 1 происходит чрезвычайно быстро (~ 10 -13 с), благодаря чему молекулы собираются на нижнем крае системы уровней S 1 .

ВВЕДЕНИЕ

1.2 ПОЛУПРОВОДНИКОВЫЙ ЛАЗЕР

1.3 ЖИДКОСТНЫЙ ЛАЗЕР

1.3.1 ЛАЗЕРЫ НА КРАСИТЕЛЯХ

1.4 ХИМИЧЕСКИЙ ЛАЗЕР И ДРУГИЕ

1.5 МОЩНЫЕ ЛАЗЕРЫ

2. ПРИМЕНЕНИЕ ЛАЗЕРОВ

2.3 ГОЛОГРАФИЯ

2.3.3 ПРИМЕНЕНИЕ ГОЛОГРАФИИ

ЗАКЛЮЧЕНИЕ

ПРИНЦИП ДЕЙСТВИЯ ЛАЗЕРОВ

Лазерное излучение - есть свечение объектов при нормальных температурах. Но в обычных условиях большинство атомов находятся на низшем энергетическом состоянии. Поэтому при низких температурах вещества не светятся. При прохождении электромагнитной волны сквозь вещество её энергия поглощается. За счёт поглощенной энергии волны часть атомов возбуждается, то есть переходит в высшее энергетическое состояние. При этом от светового пучка отнимается некоторая энергия:

где hν - величина, соответствующая количеству потраченной энергии,

E2 - энергия высшего энергетического уровня,

E1 - энергия низшего энергетического уровня.

Возбужденный атом может отдать свою энергию соседним атомам при столкновении или испустить фотон в любом направлении. Теперь представим, что каким-либо способом мы возбудили большую часть атомов среды. Тогда при прохождении через вещество электромагнитной волны с частотой

где v - частота волны,

Е2 - Е1 - разница энергий высшего и низшего уровней,

h - длина волны,

эта волна будет не ослабляться, а напротив, усиливаться за счёт индуцированного излучения. Под её воздействием атомы согласованно переходят в низшие энергетические состояния, излучая волны, совпадающие по частоте и фазе с падающей волной.


ПОЛУПРОВОДНИКОВЫЙ ЛАЗЕР

В 60-х годах, было установлено, что полупроводники - превосходный материал для лазеров.

Если соединить вместе две пластины из полупроводников разных типов, то посередине образуется переходная зона. Атомы вещества, находящиеся в ней, способны возбуждаться при прохождении электрического тока поперек зоны и генерировать свет. Зеркалами, необходимыми для получения лазерного излучения, могут служить полированные и посеребренные грани самого кристалла полупроводника.

Среди этих лазеров лучшим считается лазер на основе арсенида галлия - соединения редкого элемента галлия с мышьяком. Его инфракрасное излучение имеет мощность до десяти ватт. Если этот лазер охладить до температуры жидкого азота (-200°), мощность его излучения можно увеличить в десять раз. Это значит, что при площади излучающего слоя в 1 см2 мощность излучения достигла бы миллиона ватт. Но полупроводник с переходным слоем такого размера изготовить пока невозможно по техническим причинам.

Можно возбуждать атомы полупроводника пучком электронов (как в твердотельных лазерах - лампой-вспышкой). Электроны проникают глубоко внутрь вещества, возбуждая большее количество атомов; ширина излучающей зоны оказывается в сотни раз шире, чем при возбуждении электрическим током. Поэтому мощность излучения таких лазеров с электронной накачкой достигает уже двух киловатт.

Малые размеры полупроводниковых лазеров делают их очень удобными для применения там, где нужен миниатюрный источник света большой мощности.

ЖИДКОСТНЫЙ ЛАЗЕР

В твердых веществах можно создать большую концентрацию излучающих атомов и, значит, получить большую энергию с одного кубического сантиметра стержня. Но их трудно делать, они дороги и к тому же могут лопаться из-за перегрева во время работы.

Газы очень однородны оптически, рассеяние света в них мало, поэтому размер газового лазера может быть весьма внушительным: длина 10 метров при диаметре 10-20 сантиметров для него не предел. Но такое увеличение размера никого не радует. Это вынужденная мера, необходимая для того, чтобы компенсировать ничтожное количество активных атомов газа, находящегося в трубке лазера под давлением в сотые доли атмосферы. Прокачка газа несколько спасает дело, позволяя уменьшить размер излучателя.

Жидкости объединяют в себе достоинства и твердых и газообразных лазерных материалов: плотность их всего в два-три раза ниже плотности твердых тел (а не в сотни тысяч раз, как плотность газов). Поэтому количество их атомов в единице объема примерно одинаково. Значит, жидкостный лазер легко сделать таким же мощным, как лазер твердотельный. Оптическая однородность жидкостей не уступает однородности газов, а значит, позволяет использовать ее большие объемы. К тому же жидкость тоже можно прокачивать через рабочий объем, непрерывно поддерживая ее низкую температуру и высокую активность ее атомов.

ЛАЗЕРЫ НА КРАСИТЕЛЯХ

Называются они так потому, что их рабочая жидкость - раствор анилиновых красок в воде, спирте, кислоте и других растворителях. Жидкость налита в плоскую ванночку-кювету. Кювета установлена между зеркалами. Энергия молекулы красителя накачивается оптически, только вместо лампы-вспышки сначала использовались импульсные рубиновые лазеры, а позднее - лазеры газовые. Лазер-накачку внутрь жидкостного лазера не встраивают, а помещают вне лазера, вводя его луч в кювету через окошко в корпусе. Сейчас удалось добиться генерации света и с импульсной лампой, но не на всех красителях. Растворы могут излучать импульсы света различной длины волны - от ультрафиолета до инфракрасного света - и мощностью от сотен киловатт до нескольких мегаватт (миллионов ватт), в зависимости от того, какой краситель налит в кювету. Лазеры на красителях обладают одной особенностью. Все лазеры излучают строго на одной длине волны. Это их свойство лежит в самой природе вынужденного излучения атомов, на котором основан весь лазерный эффект. В больших и тяжелых молекулах органических красителей вынужденное излучение возникает сразу в широкой полосе длин волн. Чтобы добиться от лазера на красителях монохроматичности, на пути луча становится светофильтр. Это не просто окрашенное стекло. Он представляет собой набор стеклянных пластин, которые пропускают только свет одной длины волны. Меняя расстояние между пластинами, можно слегка изменить длину волны лазерного излучения. Такой лазер называется перестраиваемым. А для того, чтобы лазер мог генерировать свет в разных участках спектра - переходить, скажем, от синего к красному свету или от ультрафиолетового к зеленому, - достаточно сменить кювету с рабочей жидкостью. Наиболее перспективны они оказались для исследования структуры вещества. Перестраивая частоту излучения, можно узнать, свет какой длины волны поглощается или рассеивается на пути луча. Таким способом можно определить состав атмосферы и облаков на расстоянии до двухсот километров, измерить загрязненность воды или воздуха, указав сразу, какого размера частицы его загрязняют. То есть можно построить прибор, автоматически и непрерывно контролирующий чистоту воды и воздуха.

Но наряду с широкополосными жидкостными лазерами существуют и такие, у которых, наоборот, монохроматичность гораздо выше, чем у лазеров на твердом теле или на газе.

Длина волны света лазера может изменяться, укорачиваясь и удлиняясь примерно на одну сотую (у хороших лазеров). Чем меньше расстояние между зеркалами, тем эта полоса шире. У полупроводниковых лазеров, например, она составляет уже несколько длин волн, а у лазера на основе солей неодима эта полоса - одна десятитысячная. Такое постоянство длины волны можно получить только у больших газовых лазеров, да и то, если принять всяческие необходимые для этого меры: обеспечить устойчивость температуры трубки, силы тока, ее питающего, и включить в схему лазера систему автоматической подстройки длины волны излучения. Мощность излучения при этом должна быть минимальной: при ее повышении полоса расширяется. Зато в жидкостном неодимовом лазере узкая полоса излучения получается сама собой и сохраняется даже при заметном повышении мощности излучения, а это крайне важно для всякого рода точных измерений.

Поэтому от того, насколько точно выдерживается длина волны света, излучаемого лазером, зависит и точность измерений. Уменьшение полосы излучения лазера в сто раз сулит стократное увеличение точности измерения длин.

ХИМИЧЕСКИЙ ЛАЗЕР И ДРУГИЕ

Поиск новых лазеров, новых путей повышения мощности лазерного излучения, ведется в разных направлениях. В их числе, например, квантовый генератор с химической накачкой, первый вариант которого был создан в Институте химической физики АН СССР в лаборатории члена-корреспондента Академии наук В. Л. Тальрозе. В таком лазере в процессе реакции соединения фтора F с водородом Н2 или дейтерием D2 образовавшиеся молекулы HF или DF переходят на высокий энергетический уровень. Спускаясь с этого уровня, они и создают лазерное излучение - молекулы HF на волне 2700 нм, молекулы DF - на волне 3600 нм. В лазерах этого типа достигаются мощности до 10 кВт.

В одном из сравнительно мощных импульсно-периодических газовых лазеров в качестве рабочего вещества используются пары меди при температуре 1500°С или в более простом варианте пары солей меди при температуре 400°С. Накачка осуществляется энергией электронов, движущихся в газовом разряде. Лазерное излучение происходит при переходе атомов меди из возбужденного состояния в одно из двух метастабильных состояний, и при этом возможно излучение на двух длинах волн 510,6 нм и 578,2 нм, соответствующих двум оттенкам зеленого цвета. В резонаторе, который представляет собой интенсивно прокачиваемую трубу диаметром 5 см и длиной 1 м, достигнута мощность в импульсе 40 кВт при продолжительности импульсов 15-20 не, частоте следования 10-100 кГц, средней мощности в несколько десятков ватт и кпд более 1%- Ведется работа по повышению средней мощности «медного» лазера до 1 кВт.

Особый класс образуют мощные лазеры на красителях, главное достоинство которых - возможность плавного изменения частоты. Используемые в них жидкие среды имеют «размытые» энергетические уровни и допускают генерацию на многих частотах. Выбор одной из них может производиться изменением параметров резонатора, например, поворотом призмы внутри него. Если для накачки использовать мощные источники излучения, в частности, импульсные лазеры и осуществить интенсивную циркуляцию жидкого красителя, то становится реальным создание лазеров с перестраиваемой частотой со средней мощностью порядка 100 Вт и частотой повторения импульсов 10-50 кГц.

Когда речь заходит о перспективах, чаще других называют йодный лазер, в резонаторе которого соединение иода, фтора и углерода CF3J или более сложные молекулы под действием ультрафиолетовой накачки диссоциируют, разваливаются на части. Отделившиеся атомы иода оказываются в возбужденном состоянии и в дальнейшем дают инфракрасное лазерное излучение с длиной волны 1315 нм. Часто называют и лазеры на так называемых эксимерных молекулах, которые вообще могут находиться только в возбужденном состоянии. В процессе накачки затрачивается энергия на то, чтобы объединить разрозненные атомы в молекулу, и при этом она сразу оказывается возбужденной, готовой к излучению. И, отдав свой квант излучения, сделав вклад в формирование лазерного луча, эксимерная молекула просто распадается, атомы ее почти мгновенно разлетаются. Первый эксимерный лазер был создан еще десять лет назад в лаборатории академика Н. Г. Басова, ультрафиолетовое лазерное излучение на волне 176 нм здесь получили при возбуждении жидкого ксенона Хе2 мощным пучком электронов. Лет через пять в нескольких американских лабораториях получили лазерное излучение на других эксимерных молекулах, главным образом соединениях инертных газов с галоидами, например, XeF, XeCl, XeBr, KrF и других. Эксимерные лазеры работают как в видимом, так и в ультрафиолетовом диапазоне, причем они допускают некоторое изменение частоты. Созданы лазеры, имеющие кпд 10% и энергию 200 Дж в импульсе.


МОЩНЫЕ ЛАЗЕРЫ

Одна из главных тенденций в развитии современной прикладной физики - это получение все более высоких плотностей энергии и поиск путей высвобождения ее за все более короткое время. Стремительный прогресс квантовой электроники, привел к созданию большого семейства мощных лазеров. Мощные лазеры открыли принципиально новые возможности как для получения рекордно высоких концентраций энергии в пространстве и времени, так и для очень удобного подвода световой энергии к веществу. Прежде чем знакомиться с конкретными результатами по созданию мощных лазеров, полезно вспомнить, что их можно разделить на три группы - импульсные, импульсно-периодические и непрерывные. Первые излучают свет одиночными импульсами, вторые - непрерывными сериями импульсов, и, наконец, третьи, дают непрерывное излучение.

Мощность - характеристика относительная, она говорит о том, какая работа выполнена, какая энергия затрачена или получена за единицу времени. Единица мощности, как известно, ватт (Вт) - он соответствует энергии в 1 Дж, выделившейся за 1 секунду (с). Если выделение этой энергии растянется на 10 с, то на каждую секунду придется лишь 0,1 Дж и, следовательно, мощность составит 0,1 Вт. Ну, а если 1 Дж энергии выделится за сотую долю секунды, то мощность составит уже 100 Вт. Потому что при такой интенсивности процесса за секунду было бы выдано 100 Дж. На это «бы» не нужно обращать внимания - при определении мощности не имеет значения, что процесс длился всего одну сотую секунды и энергии за это время выделилось немного. Мощность говорит не о полном, итоговом, действии, а о его интенсивности, о его концентрации во времени. Если работа шла достаточно долго, во всяком случае, больше секунды, то мощность указывает на то, что было действительно сделано за одну секунду.

В импульсном лазере излучение длится очень недолго, какие-то ничтожные доли секунды, и даже при небольшой излучаемой энергии процесс оказывается сильно сжатым, сконцентрированным во времени, а мощность получается огромной. Вот, например, что было в первом ОКГ, в первом рубиновом лазере, созданном в 1960 году: он излучал импульс света с энергией около 1 Дж и продолжительностью 1 мс (миллисекунда, тысячная секунды), то есть мощность импульса составляла 1 кВт. Через некоторое время появились лазеры, которые тот же джоуль энергии излучали в гораздо более коротком импульсе - до 10 нс (наносекунда, миллиардная часть секунды). При этом мощность импульса с энергией в тот же джоуль достигала уже 100 тысяч кВт. Это еще не Куйбышевская ГЭС, имеющая мощность 2 миллиона кВт, но уже электростанция для небольшого города. С той, конечно, разницей, что лазер развивает эту огромную мощность лишь в миллиардные доли секунды, а электростанция - непрерывно круглые сутки. Нынешние лазеры дают импульсы длительностью до 0,01 нс, при той же энергии 1 Дж их мощность достигает 100 миллионов кВт.


Лазерный луч - это поток исключительно упорядоченного когерентного излучения, остронаправленного, сконцентрированного в пределах небольшого телесного угла. Именно за все эти качества мы платим столь высокую цену - кпд лазеров составляет доли процента, а в лучшем случае несколько процентов, то есть на каждый джоуль лазерного излучения нужно затратить десятки, а то и сотни джоулей энергии накачки. Но часто даже такая высокая плата совершенно оправданна,- теряя количество, мы приобретаем качество. В частности, когерентность, направленность лазерного луча в сочетании с последующей фокусировкой в очень малом объеме, например, до сферы диаметром 0,1 мм, и сжатием процесса во времени, то есть излучением очень короткими импульсами, позволяет получить огромные плотности энергии. Об этом напоминает таблица 1. Из таблицы видно, что концентрации энергии в сфокусированном мощном лазерном луче всего в тысячу раз меньше своеобразного рекордного значения для полной аннигиляции вещества нормальной плотности, полного превращения массы в энергию. Увеличение мощности лазеров связано с некоторыми общими проблемами, прежде всего со свойствами рабочего тела, то есть самого вещества, где рождается излучение. Но есть и проблемы специфические для импульсных, импульсно-периодических и непрерывных лазеров. Так, например, для импульсных лазеров одна из важных проблем - стойкость оптических элементов в сильном световом поле очень коротких импульсов. Для непрерывных и импульсно-периодических очень важна проблема отвода тепла, так как эти лазеры развивают большую среднюю мощность. Для лазера, работающего в режиме длинной очереди, импульсная мощность говорит о том, как сконцентрирована во времени энергия одного импульса, а средняя - о работе, которую выполняет серия импульсов, длившаяся секунду. Так, например, если лазер в секунду дает 20 импульсов длительностью 1 мс и энергией 1 Дж в каждом, то импульсная мощность составит 1 кВт, а средняя - 20 Вт.

Все виды лазеров начинали с достаточно скромных энергетических показателей, а совершенствовались зачастую разными путями. В частности, первый импульсный лазер работал в режиме свободной генерации - в нем самопроизвольно возникала лавина лазерного излучения и опять-таки сама собой прекращалась по окончании возбуждения. Импульс длился по нынешним меркам долго, и это определило сравнительно невысокую импульсную мощность.

Через несколько лет научились управлять генерацией методом модуляции добротности, вводя в резонатор ячейку Керра или другой аналогичный элемент, который под действием электрического напряжения меняет свои оптические свойства. В обычном состоянии ячейка закрыта, непрозрачна, и лазерная лавина в резонаторе не возникает. Только под действием короткого электрического импульса ячейка открывается, и в рабочем теле возникает короткий лазерный импульс. Его длительность может быть всего в несколько раз больше времени прохождения света между зеркалами лазера, то есть может составлять 10-20 нс.

Этот метод дал заметный прирост импульсной мощности за счет уменьшения длительности импульса. Очень короткие импульсы, вплоть до пикосекундных, получают в режиме синхронизации, или, иначе, в режиме захвата мод. Здесь в резонатор вводят особый нелинейный элемент, он неодинаково ведет себя, неодинаково просветляется для разных по интенсивности всплесков излучения и как бы вырезает из наносекундного светового импульса очень короткие пикосекундные всплески интенсивности.

ПРИМЕНЕНИЕ ЛАЗЕРОВ

ПРИМЕНЕНИЕ ЛАЗЕРОВ В МЕДИЦИНЕ

В медицине лазерные установки нашли свое применение в виде лазерного скальпеля. Его использование для проведения хирургических операций определяют следующие свойства:

1. Он производит относительно бескровный разрез, так как одновременно с рассечением тканей он коагулирует края раны “заваривая” не слишком крупные кровеносные сосуды;

2. Лазерный скальпель отличается постоянством режущих свойств. Попадание на твердый предмет (например, кость) не выводит скальпель из строя. Для механического скальпеля такая ситуация стала бы фатальной;

3. Лазерный луч в силу своей прозрачности позволяет хирургу видеть оперируемый участок. Лезвие же обычного скальпеля, равно как и лезвие электроножа, всегда в какой-то степени загораживает от хирурга рабочее поле;

4. Лазерный луч рассекает ткань на расстоянии, не оказывая никакого механического воздействия на ткань;

5. Лазерный скальпель обеспечивает абсолютную стерильность, ведь с тканью взаимодействует только излучение;

6. Луч лазера действует строго локально, испарение ткани происходит только в точке фокуса. Прилегающие участки ткани повреждаются значительно меньше, чем при использовании механического скальпеля;

7. Как показала клиническая практика, рана от лазерного скальпеля почти не болит и быстрее заживляется.

Практическое применение лазеров в хирургии началось в СССР в 1966 году в институте имени А. В. Вишневского. Лазерный скальпель был применен в операциях на внутренних органах грудной и брюшной полостей. В настоящее время лазерным лучом делают кожно-пластические операции, операции пищевода, желудка, кишечника, почек, печени, селезенки и других органов. Очень заманчиво проведение операций с использованием лазера на органах, содержащих большое количество кровеносных сосудов, например, на сердце, печени.

В настоящее время интенсивно развивается новое направление в медицине -лазерная микрохирургия глаза. Исследования в этой области ведутся в Одесском Институте глазных болезней имени В. П. Филатова, в Московском НИИ микрохирургии глаза и во многих других “глазных центрах” стран содружества Первое применение лазеров в офтальмологии было связано с лечением отслоения сетчатки. Внутрь глаза через зрачок посылаются световые импульсы от рубинового лазера (энергия импульса 0,01 - 0,1 Дж, длительность порядка - 0,1 с.). Они свободно проникают сквозь прозрачное стекловидное тело и поглощаются сетчаткой. Фокусируя излучение на отслоившемся участке, последнюю “приваривают” к глазному дну за счет коагуляции. Операция проходит быстро и совершенно безболезненно.

Вообще, из наиболее серьезных заболеваний глаза, приводящих к слепоте, выделяют пять. Это глаукома, катаракта, отслоение сетчатки, диабетическая ретинопатия и злокачественная опухоль. Сегодня все эти заболевания успешно лечатся при помощи лазеров, причем только для лечения опухолей разработано и используется три метода:

1. Лазерное облучение - облучение опухоли расфокусированным лазерным лучом, приводящее к гибели раковых клеток, потери ими способности к размножению

2. Лазерная коагуляция - разрушение опухоли умеренно сфокусированным излучением.

3. Лазерная хирургия - наиболее радикальный метод. Заключается в иссечении опухоли вместе с прилегающими тканями сфокусированным излучением.

ГОЛОГРАФИЯ

ВОЗНИКНОВЕНИЕ ГОЛОГРАФИИ

Метод фотографирования, используемый для сохранения изображения предметов, известен уже довольно долгое время и сейчас это самый доступный способ получения изображения объекта на каком-либо носителе (фотобумага, фотоплёнка). Однако информация, содержащаяся в фотографии весьма ограничена. В частности, отсутствует информация о расстояниях различных частей объекта от фотопластинки и других важных характеристиках. Другими словами, обычная фотография не позволяет восстановить полностью тот волновой фронт, который на ней был зарегистрирован. В фотографии содержится более или менее точная информация об амплитудах зафиксированных волн, но полностью отсутствует информация о фазах волн. Голография позволяет устранить этот недостаток обычной фотографии и записать на фотопластинке информацию не только об амплитудах падающих на неё волн, но и о фазах, то есть полную информацию. Волна, восстановленная с помощью такой записи, полностью идентична первоначальной, содержит в себе всю информацию, которую содержала первоначальная волна. Поэтому метод был назван голографией, то есть методом полной записи волны. Для того чтобы осуществить этот метод в световом диапазоне, необходимо иметь излучение с достаточно высокой степенью когерентности. Такое излучение можно получить при помощи лазера. Поэтому только после создания лазеров, дающих излучение с высокой степенью когерентности, удалось практически осуществить голографию. Идея голографии была выдвинута еще в 1920 году польским физиком М. Вольфке (1883-1947), но была забыта. В 1947 году независимо от Вольфке идею голографии предложил и обосновал английский физик Д. Габор, удостоенный за это в 1971 году Нобелевской премии.

СПОСОБЫ ГОЛОГРАФИРОВАНИЯ

Говоря о процессе создания голографического изображения, необходимо выделить этапы голографирования:

1. Регистрация как амплитудных, так и фазовых характеристик волнового поля, отраженного объектом наблюдения. Эта регистрация происходит на фотопластинках, которые называют голограммами.

2. Извлечение из голограммы информации об объекте, которая на ней зарегистрирована. Для этого голограмму просвечивают световым пучком.

Для осуществления этих этапов на практике существует несколько способов.

Наиболее распространенные из них - метод плоской волны и метод встречных пучков.

Стандартная интерференционная картина получается при интерференции когерентных световых волн. Таким образом для регистрации фазовых соотношений в волновом поле, которое получается в результате отражения волны объектом наблюдения, необходимо, чтобы объект был освещен монохроматическим и когерентным в пространстве излучением. Тогда и поле, рассеянное объектом в пространстве, будет обладать этими свойствами.

Если добавить к исследуемому полю, создаваемому объектом, вспомогательное поле той же частоты, например, плоскую волну (её обычно называют опорной волной ), то на всём пространстве, где обе волны пересекаются, образуется сложное, но стационарное распределение областей взаимного усиления и ослабления волн, то есть стационарная интерференционная картина, которую уже можно зафиксировать на фотопластинке.

Для того чтобы восстановить голографическое изображение, уже записанное на голограмму, последнюю необходимо осветить тем же лучом лазера, который был использован при записи. Изображение объекта формируется в результате дифракции света на неоднородных почернениях голограммы.

В 1962 году советским ученым Ю. Н. Денисюком был предложен метод получения голографических изображений, являющийся развитием практически уже тогда не применявшегося способа цветной голографии Липпмана . Объект наблюдения освещается сквозь фотопластинку (она вполне прозрачна для света даже в непроявленном состоянии). Стеклянная подложка фотопластинки покрыта фотоэмульсией с толщиной слоя около 15 - 20 мкм. Отраженное от объекта волновое поле распространяется назад по направлению к слою фотоэмульсии. Идущий навстречу этой волне исходный световой пучок от лазера выполняет роль опорной волны. Именно поэтому данный метод получил название метода встречных пучков. Интерференция волн, возникающая в толще фотоэмульсии вызывает ее слоистое почернение, которое регистрирует распределение, как амплитуд, так и фаз волнового поля, рассеянного объектом наблюдения. На голографии по методу встречных световых пучков основана цветная голография. Чтобы уяснить принцип действия цветной голографии нужно напомнить, в каких случаях человеческий глаз воспринимает изображение цветным, а не черно-белым.

Опыты по физиологии зрения показали, что человек видит изображение цветным или хотя бы близким к натуральной окраске объекта, если оно воспроизводится минимум в трех цветах, например, в синем, красном и зеленом. Совмещение этих цветов осуществляется при самой примитивной цветной репродукции, выполняемой методом литографии (для высокохудожественных репродукций используется 10 - 15 красочная печать)

Учитывая особенности человеческого восприятия, чтобы восстановить цветное изображение объекта, необходимо сам объект осветить при записи голограммы одновременно или последовательно лазерным излучением трех спектральных линий, отстоящих по длинам волн достаточно далеко друг от друга. Тогда в толще фотоэмульсии образуется три системы стоячих волн и, соответственно, три системы пространственных решеток с различным распределением почернения. Каждая из этих систем будет формировать изображение объекта в своем спектральном участке белого цвета, используемого при восстановлении изображения. Благодаря этому в отраженном от обработанной голограммы расходящемся пучке белого света получится цветное изображение объекта, как результат суперпозиции трех участков спектра, что соответствует минимальным физиологическим требованиям зрения человека. Голографирование по методу Денисюка широко используется для получения высококачественных объемных копий различных предметов, например, уникальных произведений искусства.

ПРИМЕНЕНИЕ ГОЛОГРАФИИ

Как уже было указано, первоначальная задача голографии заключалась в получении объёмного изображения. С развитием голографии на толстослойных пластинах возникла возможность создания объёмных цветных фотографий. На этой базе исследуются пути реализации голографического кино, телевидения и т. д. Один из методов прикладной голографии, именуемый голографическойинтерферометрией, нашел очень широкое распространение. Суть метода в следующем. На одну фотопластинку последовательно регистрируются две интерференционные картины, соответствующие двум разным, но мало отличающимся состояниям объекта, например, при деформации. При просвечивании такой “двойной” голограммы образуются, очевидно, два изображения объекта, измененные относительно друг друга в той же мере, что и объект в двух его состояниях.

Восстановленные волны, формирующие эти два изображения, когерентны, интерферируют, и на новом изображении наблюдаются интерференционные полосы, которые и характеризуют изменение состояния объекта. В другом варианте голограмма изготавливается для какого-то определенного состояния объекта. При просвечивании ее объект не удаляется и производится его повторное освещение, как на первом этапе голографирования. Тогда опять получается две волны, одна формирует голографическое изображение, а другая распространяется от самого объекта. Если теперь происходят какие-то изменения в состоянии объекта (в двух последовательных волнах возникает разность сравнения с тем, что было во время экспонирования голограммы), то между указанными хода, и изображение покрывается интерференционными полосами.

Описанный способ применяется для исследования деформаций предметов, их вибраций, поступательного движения и вращений, неоднородности прозрачных объектов и т. п. Интерференционная картина наглядно свидетельствует о различии деформаций, напряжений в теле, крутильные моменты, распределение температур и т. д. Голография может применяться для обеспечения точности обработки деталей.

ЗАКЛЮЧЕНИЕ

Лазер – один из мощнейших инструментов сегодняшней науки. Не возможно перечислить все области его применения, так как каждый день для лазера находятся новые задачи.

В настоящей работе были рассмотрены основные виды лазеров и их принцип работы. Были также охвачены основные сферы применения, а именно: промышленность, медицина, информационные технологии, наука.

Такие разнообразные задачи могут выполняться с помощью лазера благодаря его свойствам. Когерентность, монохроматичность, высокая энергетическая плотность позволяют решать сложные технологические операции.

Лазер – инструмент будущего, уже прочно вошедший в нашу жизнь.


ВВЕДЕНИЕ

1. ПРИНЦИП ДЕЙСТВИЯ И ВИДЫ ЛАЗЕРОВ

1.1 ОСНОВНЫЕ СВОЙСТВА ЛАЗЕРНОГО ЛУЧА

1.2 ПОЛУПРОВОДНИКОВЫЙ ЛАЗЕР

1.3 ЖИДКОСТНЫЙ ЛАЗЕР

1.3.1 ЛАЗЕРЫ НА КРАСИТЕЛЯХ

1.4 ХИМИЧЕСКИЙ ЛАЗЕР И ДРУГИЕ

1.5 МОЩНЫЕ ЛАЗЕРЫ

1.5.1 МНОГОКАСКАДНЫЕ И МНОГОКАНАЛЬНЫЕ СИСТЕМЫ

2. ПРИМЕНЕНИЕ ЛАЗЕРОВ

2.1 ПРИМЕНЕНИЕ ЛАЗЕРНОГО ЛУЧА В ПРОМЫШЛЕННОСТИ И ТЕХНИКЕ

2.2 ПРИМЕНЕНИЕ ЛАЗЕРОВ В МЕДИЦИНЕ

2.3 ГОЛОГРАФИЯ

2.3.1 ВОЗНИКНОВЕНИЕ ГОЛОГРАФИИ

2.3.2 СПОСОБЫ ГОЛОГРАФИРОВАНИЯ

2.3.3 ПРИМЕНЕНИЕ ГОЛОГРАФИИ

2.4 ЛАЗЕРНЫЕ ТЕХНОЛОГИИ – СРЕДСТВО ЗАПИСИ И ОБРАБОТКИ ИНФОРМАЦИИ

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

ПРИНЦИП ДЕЙСТВИЯ ЛАЗЕРОВ

В основу лазеров положено явление индуцированного излучения, существование которого было предсказано Эйнштейном в 1917 году. По Эйнштейну, наряду с процессами обычного излучения и резонансного поглощения существует третий процесс - вынужденное (индуцированное) излучение. Свет резонансной частоты, то есть той частоты, которую атомы способны поглощать, переходя на высшие энергетические уровни, должен вызывать свечение атомов, уже находящихся на этих уровнях, если таковые имеются в среде. Характерная особенность этого излучения заключается в том, что испускаемый свет неотличим от вынуждающего света, то есть совпадает с последним по частоте, по фазе, поляризации и направлению распространения. Это означает, что вынужденное излучение добавляет в световой пучок точно такие же кванты света, какие уводит из него резонансное поглощение.

Атомы среды могут поглощать свет, находясь на нижнем энергетическом уровне, излучают же они на верхних уровнях. Отсюда следует, что при большом количестве атомов на нижних уровнях (по крайней мере, большем, чем количество атомов на верхних уровнях), свет, проходя через среду, будет ослабляться. Напротив, если число атомов на верхних уровнях больше числа невозбужденных, то свет, пройдя через данную среду, усилится. Это значит, что в данной среде преобладает индуцированное излучение. Пространство между зеркалами заполнено активной средой, то есть средой, содержащей большее количество возбужденных атомов (атомов, находящихся на верхних энергетических уровнях), чем невозбужденных. Среда усиливает проходящий через неё свет за счет индуцированного излучения, начало которому даёт спонтанное излучение одного из атомов.

Лазерное излучение - есть свечение объектов при нормальных температурах. Но в обычных условиях большинство атомов находятся на низшем энергетическом состоянии. Поэтому при низких темпера

Одним из самых замечательных достижений физики второй половины двадцатого века было открытие физических явлений, послуживших основой для создания удивительного прибора - оптического квантового генератора, или лазера.

Лазер представляет собой источник монохроматического когерентного света с высокой направленностью светового луча. Само слово “лазер” составлено из первых букв английского словосочетания, означающего усиление света в результате вынужденного излучения”.

Действительно, основной физический процесс, определяющий действие лазера, - это вынужденное испускание излучения. Оно происходит при взаимодействии фотона с возбужденным атомом при точном совпадении энергии фотона с энергией возбуждения атома (или молекулы)

В результате этого взаимодействия атом переходит в невозбужденное состояние, а избыток энергии излучается в виде нового фотона с точно такой же энергией, направлением распространения и поляризацией, как и у первичного фотона. Таким образом, следствием данного процесса является наличие уже двух абсолютно идентичных фотонов. При дальнейшем взаимодействии этих фотонов с возбужденными атомами, аналогичными первому атому, может возникнуть “цепная реакция” размножения одинаковых фотонов, “летящих” абсолютно точно в одном направлении, что приведет к появлению узконаправленного светового луча. Для возникновения лавины идентичных фотонов необходима среда, в которой возбужденных атомов было бы больше, чем невозбужденных, поскольку при взаимодействии фотонов с невозбужденными атомами происходило бы поглощение фотонов. Такая среда называется средой с инверсной населенностью уровней энергии.

Итак, кроме вынужденного испускания фотонов возбужденными атомами происходят также процесс самопроизвольного, спонтанного испускания фотонов при переходе возбужденными атомами в невозбужденное состояние и процесс поглощения фотонов при переходе атомов из невозбужденного состояния в возбужденное. Эти три процесса, сопровождающие переходы атомов в возбужденные состояния и обратно, были постулированы А. Эйнштейном в 1916 г.

Если число возбужденных атомов велико и существует инверсная выделенность уровней (в верхнем, возбужденном состоянии атомов больше, чем в нижнем, невозбужденном), то первый же фотон, родившийся в результате спонтанного излучения, вызовет все нарастающую лавину появления идентичных фотонов. Произойдет усиление спонтанного излучения.

На возможность усиления света в среде с инверсной населенностью за счет вынужденного испускания впервые указал в 1939 г. советский физик

В.А. Фабрикант, предложивший создавать инверсную населенность в электрическом разряде в газе.

При одновременном рождении (принципиально это возможно) большого числа спонтанно испущенных фотонов возникнет большое число лавин, каждая из которых будет распространяться в своем направлении, заданном первоначальным фотоном соответствующей лавины. В результате мы получим потоки квантов света, но не сможем получить ни направленного луча, ни высокой монохроматичности, так как каждая лавина инициировалась собственным первоначальным фотоном. Для того чтобы среду с инверсной населенностью можно было использовать для генерации лазерного луча, т. е. направленного луча с высокой монохроматичностью, необходимо “снимать” инверсную населенность с помощью первичных фотонов, уже обладающих одной и той же энергией, совпадающей с энергией данного перехода в атоме. В этом случае мы будем иметь лазерный усилитель света.

Существует, однако, и другой вариант получения лазерного луча, связанный с использованием системы обратной связи. Спонтанно родившиеся фотоны, направление распространения которых не перпендикулярно плоскости зеркал, создадут лавины фотонов, выходящие за пределы среды. В то же время фотоны, направление распространения которых перпендикулярно плоскости зеркал, создадут лавины, многократно усиливающиеся в среде вследствие многократного отражения от зеркал. Если одно из зеркал будет обладать небольшим пропусканием, то через него будет выходить направленный поток фотонов перпендикулярно плоскости зеркал. При правильно подобранном пропускании зеркал, точной их настройке относительно друг друга и относительно продольной оси среды с инверсной населенностью обратная связь может оказаться настолько эффективной, что излучением “вбок” можно будет полностью пренебречь по сравнению с излучением, выходящим через зеркала. На практике это, действительно, удается сделать. Такую схему обратной связи называют оптическим резонатором, и именно этот тип резонатора используют в большинстве существующих лазеров.

В 1955 г. одновременно и независимо Н.Г. Басовым и А. М. Прохоровым в СССР и Ч. Таунсом в США был предложен принцип создания первого в мире генератора квантов электромагнитного излучения на среде с инверсной населенностью, в котором вынужденное испускание в результате использования обратной связи приводило к генерации чрезвычайно монохроматического излучения.

Спустя несколько лет, в 1960 г., американским физиком Т. Мейманом был запущен первый квантовый генератор оптического диапазона - лазер, в котором обратная связь осуществлялась с помощью описанного выше оптического резонатора, а инверсная населенность возбуждалась в кристаллах рубина, облучаемых излучением ксеноновой лампы-вспышки. Рубиновый кристалл представляет собой кристалл оксида алюминия АL2О3 с небольшой добавкой = О,05% хрома. При добавлении атомов хрома прозрачные кристаллы рубина приобретают розовый цвет и поглощают излучение в двух полосах ближней ультрафиолетовой области спектра. Всего кристаллами рубина поглощается около 15% света лампы-вспышки. При поглощении света ионами хрома происходит переход ионов в возбужденное состояние. В результате внутренних процессов возбужденные ионы хрома переходят в основное состояние не сразу, а через два возбужденных уровня. На этих уровнях происходит накопление ионов, и при достаточно мощной вспышке ксеноновой лампы возникает инверсная населенность между промежуточными уровнями и основным уровнем ионов хрома.

Торцы рубинового стержня полируют, покрывают отражающими интерференционными пленками, выдерживая при этом строгую параллельность торцов друг другу.

При возникновении инверсии населенностей уровней ионов хрома в рубине происходит лавинное нарастание числа вынужденно испущенных фотонов, и обратной связи на оптическом резонаторе, образованном зеркалами на торцах рубинового стержня, обеспечивает формирование узконаправленного луча красного света. Длительность лазерного импульса==0.0001 с, немного короче длительности вспышки ксеноновой лампы. Энергия импульса рубинового лазера около 1ДЖ.

С помощью механической системы (вращающееся зеркало) или быстродействующего электрического затвора можно “включить “ обратную связь (настроить одно из зеркал) в момент достижения максимальной инверсии населенностей и, следовательно, максимального усиления активной среды. В этом случае мощность индуцированного излучения будет чрезвычайно велика и инверсия населенности “снимется” вынужденным излучением за очень короткое время.

В этом режиме модулированной добротности резонатора излучается гигантский импульс лазерного излучения. Полная энергия этого импульса останется приблизительно на том же уровне, что и в режиме “свободной генерации”, но вследствие сокращения в сотни раз длительности импульса также в сотни раз возрастает мощность излучения, достигая значения =100000000Вт.

Рассмотрим некоторые уникальные свойства лазерного излучения.

При спонтанном излучении атом излучает спектральную линию конечной ширины. При лавинообразном нарастании числа вынужденно испущенных фотонов в среде с инверсной населенностью интенсивность излучения этой лавины будет возрастать, прежде всего, в центре спектральной линии данного атомного перехода, и в результате этого процесса ширина спектральной линии первоначального спонтанного излучения будет уменьшаться. На практике в специальных условиях удается сделать относительную ширину спектральной линии лазерного излучения в 1*10000000-1*100000000 раз меньше, чем ширина самых узких линий спонтанного излучения, наблюдаемых в природе.

Кроме сужения линии излучения в лазере удается получить расходимость луча менее 0,00001 радиана, т. е. на уровне угловых секунд.

Известно, что направленный узкий луч света можно получить в принципе от любого источника, поставив на пути светового потока ряд экранов с маленькими отверстиями, расположенными на одной прямой. Представим себе, что мы взяли нагретое черное тело и с помощью диафрагм получили луч света, из которого посредством призмы или другого спектрального прибора выделили луч с шириной спектра, соответствующей ширине спектра лазерного излучения. Зная мощность лазерного излучения, ширину его спектра и угловую расходимость луча, можно с помощью формулы Планка вычислить температуру воображаемого черного тела, использованного в качестве источника светового луча, эквивалентного лазерному лучу. Этот расчет приведет нас к фантастической цифре: температура черного тела должна быть порядка десятков миллионов градусов! Удивительное свойство лазерного луча - его высокая эффективная температура (даже при относительно малой средней мощности лазерного излучения или малой энергии лазерного импульса) открывает перед исследователями большие возможности, абсолютно неосуществимые без использования лазера.

Лазеры различаются: способом создания в среде инверсной населенности, или, иначе говоря, способом накачки (оптическая накачка, возбуждение электронным ударом, химическая накачка и т. п.); рабочей средой (газы, жидкости, стекла, кристаллы, полупроводники и т.д.); конструкцией резонатора; режимом работы (импульсный, непрерывный). Эти различия определяются многообразием требований к характеристикам лазера в связи с его практическими применениями.

«Лазерное излучение»

Введение

Лазерное излучение является одним из наиболее интересных научно-технических достижений ХХ века. Создание лазеров привело ко второму рождению научной и технической оптики и развитию совершенно новых отраслей промышленности. В отличие от обычных, тепловых источников излучения лазер дает свет, обладающий целым рядом особых и очень ценных свойств.
Важно, что лазерное излучение когерентно и практически монохроматично. До появления лазеров этим свойством обладали только радиоволны, излучаемые хорошо стабилизированным передатчиком. А это дало возможность освоить диапазон видимого света для осуществления передачи информации и связи, тем самым существенно увеличив количество передаваемой информации в единицу времени.
Вследствие того, что вынужденное излучение распространяется строго вдоль оси резонатора, лазерный луч расширяется слабо: его расходимость составляет несколько угловых секунд. 1
Эти перечисленные качества позволяют фокусировать лазерный луч в пятно чрезвычайно малого размера, получая в точке фокуса огромную плотность энергии. Лазерное излучение большой мощности имеет огромную температуру. Так, например, импульсный лазер мощностью 1015 Вт имеет температуру излучения около 100 миллионов градусов. Благодаря этим свойствам лазеры нашли применение в различных областях науки, техники и медицины. Очень перспективно применение лазерного излучения для космической связи, в оптических локаторах, измеряющих большие расстояния с точностью до миллиметров, для передачи телевизионных и компьютерных сигналов по оптическому волокну. Лазеры используются при считывании информации с компакт-дисков, со штрих-кодов товаров. С помощью луча лазеров малой интенсивности можно проводить хирургические операции, например «приваривать» отслоившуюся от глазного дна сетчатку, делать сосудистые операции. В обработке материалов при помощи лазера осуществляют сварку, резку, сверление очень маленьких отверстий с высокой точностью. Перспективно использование мощного лазерного излучения для осуществления управляемой термоядерной реакции. Лазеры применяются также для топографической съемки, потому что луч лазера задает идеальную прямую линию. Направление тоннеля под проливом Ла-Манш задавалось лазерным лучом. С помощью лазерного излучения получаются голографические трехмерные объемные изображения. В метрологии лазер применяется при измерении длины, скорости, давления. Создание лазеров результат использования фундаментальных физических законов в прикладных исследованиях. Оно привело к гигантскому прогрессу в различных областях техники и технологии. Создание лазера стало определяющим фактором и в развитии оптических систем передачи. Сказанным выше, определяется актуальность исследования в данной работе.
Целью данной работы является изучить лазерное излучение. Задачами данной работы являются рассмотреть:
- свойства лазерного излучения;
- краткую историю возникновения и усовершенствования лазеров;
- источники, свойства и типы лазеров;
- вредное действие лазерного излучения;
- классы безопасности лазеров и средства защиты.

1. Лазерная техника

Лазерная техника еще очень молода - ей нет и полувека. Однако за это совсем небольшое время лазер из любопытного лабораторного устройства превратился в средство научного исследования, в инструмент, применяемый в промышленности. Трудно найти такую область современной техники, где бы не работали лазеры. Их излучение используется для связи, записи и чтения информации, для точных измерений; они незаменимы в медицине хирургии и терапии. Многие учёные считают, что кардинальные изменения, которые лазер внёс в жизнь человека, - подобны последствиям промышленного применения электричества в конце XIX века.
Большие возможности лазерной технологии объясняются особыми свойствами лазерного излучения. Его природу изучает квантовая механика. Именно её законы описывают процессы, происходящие в лазере, поэтому его также называют оптическим квантовым генератором.
Таким образом, свет - это поток испускаемых атомами особых частиц - фотонов, или квантов электромагнитного излучения. Их следует представлять себе в виде отрезков волны, а не как частицы вещества. Каждый фотон несёт строго определённую порцию энергии, выброшенной атомом. 2
Излученные фотоны абсолютно идентичны, их частоты равны и фазы одинаковы. Когда они встретятся с двумя возбужденными атомами, фотонов станет 4. Потом 8, 16 и т. д. Возникнет лавина неотличимых друг от друга фотонов, образующих так называемое монохроматическое (одноцветное) когерентное излучение. Это вынужденное излучение обладает целым рядом интересных свойств.
Лазерное излучение имеет очень высокую температуру. Её величина зависит от мощности излучения и достигает порой миллионов градусов.
При этом лазер излучает энергию на одной частоте, на одной длине волны. Раньше такое монохроматическое излучение получали только в диапазоне радиоволн. Свет, испускаемый даже очень маленьким кусочком раскалённого вещества, всегда состоит из волн самой разной частоты. По этой причине в оптике никак не удавалось, например, создать узконаправленные и сфокусированные пучки излучения, которыми радиоинженеры пользуются уже не один десяток лет.
Так же, лазерное излучение очень стабильно. Электромагнитная волна, которую генерирует лазер, распространяется на многие километры не изменяясь. Её амплитуда, частота и фаза могут оставаться постоянными очень долго. Это качество называется высокой пространственной и временной когерентностью.
Эти три особенности лазерного излучения нашли применение в самых разных отраслях техники, при решении различных технологических задач. Для каждого случая можно подобрать лазер нужного типа и требуемой мощности. 3

2. Характеристика лазеров

2.1 Рождения семейства лазеров

То, как получить когерентное излучение, стало в общих чертах понятно в 1918 году когда Альберт Эйнштейн предсказал явление вынужденного излучения. Если создать среду, в которой атомы находятся в возбуждённом состоянии, и «запустить в неё слабый поток когерентных фотонов, то его интенсивность станет расти. В начале 50-х гг. российские исследователи Николай Геннадьевич Басов, Александр Михайлович Прохоров и независимо от них американский физик Чарлз Хард Таунс создали усилитель радиоволн высокой частоты на молекулах аммиака. Нужные для работы возбуждённые молекулы отбирало из потока газа электрическое поле сложной конфигурации. Новорождённое устройство получило название мазер.
В 1960 году американский физик Теодор Гарольд Мейман сконструировал первый квантовый генератор оптического диапазона лазер. Усиление света происходило в кристалле рубина прозрачной разновидности окиси алюминия с небольшой примесью хрома (на этот материал указали третья годами раньше Н.Г Басов и А.М. Прохоров). В лазере использовался охлаждаемый жидким азотом рубиновый стержень длиной около 4 см и диаметром 5 мм. Посеребренные торцы стержня служили зеркалами, одно из которых было полупрозрачным. Энергию в кристалл накачивала мощная импульсная лампа. Поток фотонов высокой энергии переводил атомы хрома в возбужденное состояние. На одном из высокоэнергетических уровней атомы задерживаются в среднем на 0,003 с время по атомным масштабам огромное. За этот период часть атомов успевает самопроизвольно излучить фотоны. Их поток, многократно пробегая между зеркалами, заставляет все возбужденные атомы излучать кванты света. В результате рождается световая вспышка - лазерный импульс мощностью в десятки тысяч ватт. Сегодня лазерные стержни изготовляют из различных материалов, но чаще всего из рубина, граната и стекла с примесью редкого металла - неодима Некоторые твердотельные лазеры (например, на гранате) генерируют сотни и тысячи импульсов в секунду. 4
И в том же 1960 году американские физики А Джэван, В Бепнет и Д. Эрриот создали газовый лазер, работающий на смеси гелия и неона. Этот лазер излучал красный свет уже не импульсами, а непрерывно. Смесь газов оказалась настолько хорошо подобранной, что гелиево-неоновые лазеры до сих пор остаются самыми распространёнными источниками когерентного света, хотя излучения удалось добиться и от множества других газов и паров. Энергию в газовую смесь накачивает тлеющий электрический разряд. Цвет луча зависит от состава газа или пара, на котором лазер работает. Аргон, например, даёт синий свет, криптон - жёлтый, ксенон и пары меди зелёный. углекислый газ и пары воды невидимые тестовые (инфракрасные) лучи.
В семейство газовых лазеров можно отнести и квантовые генераторы, в которых возбужденные молекулы не готовятся заранее, а появляются непосредственно в момент излучения. Это так называемые газодинамические и химические лазеры, развивающие колоссальную мощность в сотни киловатт и даже десятки мегаватт в непрерывном режиме.
Газодинамический лазер напоминает реактивный двигатель. Молекулы сильно нагретого газа, вылетающие из него, отдают энергию в виде светового излучения. В химическом лазере возбуждённые молекулы возникают в результате химической реакции. Самая энергичная из них - соединение атомарного фтора с водородом.
Непрерывное излучение дают и жидкостные лазеры. Рабочим веществом для них служат, например, растворы солей неодима и соединений анилина. Поскольку соединения анилина используются для окраски тканей, генераторы на их основе называют лазерами на красителях. Для более стабильной работы лазера жидкость можно пропускать через холодильник.
Самые миниатюрные лазеры - полупроводниковые: в спичечный коробок их можно поместить несколько десятков, а объём вещества, в котором происходит вынужденное излучение, не превышает тысячных долей кубического миллиметра. Энергию в полупроводник накачивает электрический ток. Больше половины его «превращается» в свет, т. е. коэффициент полезного действия этих лазеров может достигать более чем 50 %.

2.2 Типы лазеров

1) Твердотельные лазеры.
Первой твердой активной средой стал рубин – кристалл корунда Al2O3 с небольшой примесью ионов хрома Cr +++ . Сконструировал его Т. Мейман (США) в 1960. Широко применяется также стекло с примесью неодима Nd, алюмоиттриевый гранат Y 2 Al 5 O 12 с примесью хрома, неодима и редкоземельных элементов в виде стержней. Накачкой твердотельных лазеров обычно служит импульсная лампа, вспыхивающая примерно на 10–3 секунды, а лазерный импульс оказывается раза в два короче. Часть времени тратится на создание инверсной заселенности, а в конце вспышки интенсивность света становится недостаточной для возбуждения атомов и генерация прекратится. Лазерный импульс имеет сложную структуру, он состоит из множества отдельных пиков длительностью порядка 10–6 секунды, разделенных промежутками, примерно, в 10–5 секунды. В этом режиме так называемой свободной генерации мощность импульса может достигать десятков киловатт. Повысить мощность, просто усиливая свет накачки и увеличивая размеры лазерного стержня, невозможно чисто технически. Поэтому мощность лазерных импульсов повышают, уменьшая их длительность. Для этого перед одним из зеркал резонатора ставят затвор, который не позволяет генерации начаться, пока на верхний уровень не будут переброшены практически все атомы активного вещества. Затем затвор на короткое время открывается и вся накопленная энергия высвечивается в виде так называемого гигантского импульса. В зависимости от запаса энергии и длительности вспышки мощность импульса может составлять от нескольких мегаватт до десятков тераватт (1012 ватт). 5
2) Газовые лазеры.
Активной средой газовых лазеров служат газы низкого давления (от сотых долей до нескольких миллиметров ртутного столба) или их смеси, заполняющие стеклянную трубку с впаянными электродами. Первый газовый лазер на смеси гелия и неона был создан вскоре после лазера рубинового в 1960 А. Джаваном, В. Беннетом и Д. Эрриотом (США). Накачкой газовых лазеров служит электрический разряд, питаемый высокочастотным генератором. Генерация излучения ими происходит так же, как и в твердотельных лазерах, но газовые лазеры дают, как правило, непрерывное излучение. Поскольку плотность газов очень мала, длина трубки с активной средой должна быть достаточно велика, чтобы массы активного вещества хватило для получения высокой интенсивности излучения.
К газовым лазерам можно отнести также лазеры газодинамические, химические и эксимерные (лазеры, работающие на электронных переходах молекул, существующих только в возбужденном состоянии).
Газодинамический лазер похож на реактивный двигатель, в котором сгорает топливо с добавкой молекул газов активной среды. В камере сгорания молекулы газов возбуждаются, и, охлаждаясь при сверхзвуковом течении, отдают энергию в виде когерентного излучения большой мощности в инфракрасной области, которое выходит поперек газового потока.
3) Химические лазеры.
В химических лазерах (вариант газодинамического лазера) инверсия заселенности образуется за счет химических реакций. Наиболее высокую мощность развивают лазеры на реакции атомарного фтора с водородом.
4) Жидкостные лазеры.
Активной средой этих лазеров (их называют также лазерами на красителях) служат различные органические соединения в виде растворов. Первые лазеры на красителях появились в конце 60-х. Плотность их рабочего вещества занимает промежуточное место между твердым телом и газом, поэтому они генерируют довольно мощное излучение (до 20 Вт) при небольших размерах кюветы с активным веществом. Работают они как в импульсном, так и в непрерывном режиме, их накачку осуществляют импульсными лампами и лазерами. Возбужденные уровни молекул красителей имеют большую ширину, поэтому жидкостные лазеры излучают сразу несколько частот. А меняя кюветы с растворами красителей, излучение лазера можно перестраивать в очень широком диапазоне. Плавную подстройку частоты излучения осуществляют настройкой резонатора.
5) Полупроводниковые лазеры.
Этот вид оптических квантовых генераторов был создан в 1962 одновременно несколькими группами американских исследователей (Р.Холлом, М.И. Нейтеном, Т. Квистом и др.), хотя теоретическое обоснование его работы сделал Н.Г.Басов с сотрудниками в 1958. Наиболее распространенные лазерный полупроводниковый материал – арсенид галлия GaAr. 6
В соответствии с законами квантовой механики электроны в твердом теле занимают широкие энергетические полосы, состоящие из множества непрерывно расположенных уровней. Нижняя полоса, называемая валентной зоной, отделена от верхней зоны (зоны проводимости) так называемой запрещенной зоной, в которой энергетические уровни отсутствуют. В полупроводнике электронов проводимости мало, подвижность их ограничена, но под действием теплового движения отдельные электроны могут перескакивать из валентной зоны в зону проводимости, оставляя в ней пустое место – «дырку». И если электрон с энергией Eэ спонтанно возвращается обратно в зону проводимости, происходит его «рекомбинация» с дыркой, имеющей энергию Eд, которая сопровождается излучением из запрещенной зоны фотона частотой n = Eэ – Eд. Накачка полупроводникового лазера осуществляется постоянным электрическим током (при этом от 50 до почти 100% его энергии превращается в излучение); резонатором обычно служат полированные грани кристалла полупроводника.
6) Лазеры в природе.
Во Вселенной обнаружены лазеры естественного происхождения. Инверсная заселенность возникает в огромных межзвездных облаках конденсированных газов. Накачкой служат космические излучения, свет близких звезд и пр. Из-за гигантской протяженности активной среды (газовых облаков) – сотни миллионов километров – такие астрофизические лазеры не нуждаются в резонаторах: вынужденное электромагнитное излучение в диапазоне длин волн от нескольких сантиметров (Крабовидная туманность) до микрона (окрестности звезды Эта Карина) возникает в них при однократном проходе волны.

2.3 Свойства лазерного излучения

В отличие от обычных, тепловых источников излучения лазер дает свет, обладающий целым рядом особых и очень ценных свойств. 7
1. Лазерное излучение когерентно и практически монохроматично. До появления лазеров этим свойством обладали только радиоволны, излучаемые хорошо стабилизированным передатчиком. Из-за того, что вынужденное излучение распространяется строго вдоль оси резонатора, лазерный луч расширяется слабо: его расходимость составляет несколько угловых секунд.
Эти перечисленные качества позволяют фокусировать лазерный луч в пятно чрезвычайно малого размера, получая в точке фокуса огромную плотность энергии.
2. Лазерное излучение большой мощности имеет огромную температуру. Так, например, импульсный лазер мощностью порядка петаватта (1015 Вт) имеет температуру излучения около 100 миллионов градусов.
Эти уникальные свойства лазерного излучения сделали квантовые генераторы незаменимым инструментом в самых разных областях науки и техники.
1. Технологические лазеры. Мощные лазеры непрерывного действия применяются для резки, сварки и пайки деталей из различных материалов. Высокая температура излучения позволяет сваривать материалы, которые иными методами соединить нельзя (например, металл с керамикой). Высокая монохроматичность излучения позволяет сфокусировать луч в точку диаметром порядка микрона и применять его для изготовления микросхем (так называемый метод лазерного скрайбирования – снятия тонкого слоя). Для обработки деталей в вакууме или в атмосфере инертного газа лазерный луч можно вводить в технологическую камеру через прозрачное окно.
2. Лазерная связь. Появление лазеров произвело переворот в технике связи и записи информации. Существует простая закономерность: чем выше несущая частота (меньше длина волны) канала связи, тем больше его пропускная способность. Именно поэтому радиосвязь, вначале освоившая диапазон длинных волн, постепенно переходила на все более короткие длины волн. Но свет – такая же электромагнитная волна, как и радиоволны, только в десятки тысяч раз короче, поэтому по лазерному лучу можно передать в десятки тысяч раз больше информации, чем по высокочастотному радиоканалу. Лазерная связь осуществляется по оптическому волокну – тонким стеклянным нитям, свет в которых за счет полного внутреннего отражения распространяется практически без потерь на многие сотни километров. Лазерным лучом записывают и воспроизводят изображение (в том числе движущееся) и звук на компакт-дисках.
3. Лазеры в медицине. Лазерная техника широко применяется и в хирургии, и в терапии. Лазерным лучом, введенным через глазной зрачок, «приваривают» отслоившуюся сетчатку и исправляют дефекты глазного дна. Хирургические операции, производимые «лазерным скальпелем» меньше травмируют живые ткани. А лазерное излучение малой мощности ускоряет заживление ран и оказывает воздействие, аналогичное иглоукалыванию, практикуемому восточной медициной (лазерная акупунктура).
4. Лазеры в научных исследованиях. Чрезвычайно высокая температура излучения и высокая плотность его энергии дает возможность исследовать вещество в экстремальном состоянии, существующем только в недрах горячих звезд. Делаются попытки осуществить термоядерную реакцию, сжимая ампулу со смесью дейтерия с тритием системой лазерных лучей (т.н. инерционный термоядерный синтез). В генной инженерии и нанотехнологии (технологии, имеющей дело с объектами с характерными размерами 10–9 м) лазерными лучами разрезают, передвигают и соединяют фрагменты генов, биологических молекул и детали размером порядка миллионной доли миллиметра (10–9 м). Лазерные локаторы (лидары) применяются для исследования атмосферы.
5. Военные лазеры. Военное применение лазеров включает как их использование для обнаружения целей и связи, так и применение в качестве оружия. Лучами мощных химических и эксимерных лазеров наземного или орбитального базирования планируется разрушать или выводить из строя боевые спутники и самолеты противника. Созданы образцы лазерных пистолетов для вооружения экипажей орбитальных станций военного назначения.

3. Механизмы вредного воздействие лазерного излучения

Ткани и органы, которые обычно подвержены лазерному облучению это глаза и кожа. Существуют три основных типа повреждения тканей, вызванных лазерным облучением. Это тепловые эффекты, фотохимическое воздействие, а также акустические переходные эффекты (подвержены только глаза). Тепловые эффекты могут возникать при любой длине волны и являются следствием излучения или светового воздействия на охлаждающий потенциал кровотока тканей.
В воздухе, фотохимический эффекты происходят между 200 и 400 нм и ультрафиолете, а также между 400 до 470 нм фиолетовых длинах волн. Фотохимические эффекты связанны с продолжительностью и также частотой повторения излучения.
Акустические переходные эффекты, связанные с длительностью импульса, могут произойти в короткий срок импульсов (до 1 мс) в зависимости от конкретной длины волны лазера. Акустическое воздействие переходных эффектов плохо изучено, но оно может вызвать повреждение сетчатки, которая отлична от термической травмы сетчатки.
Потенциальные места повреждения глаза напрямую связаны с длиной волны лазерного излучения. Длины волн короче 300 нм или более 1400 нм, воздействуют на роговицу. Длины волн между 300 и 400 нм, воздействуют на водянистую влагу, радужную оболочку глаза, хрусталик и стекловидное тело. Длины волн от 400 нм и 1400 нм, направлены на сетчатку. 8
Вред лазера для сетчатки может быть очень большим из-за фокусного усиления (оптического усиления) от глаз, что составляет примерно 105. Это означает, что излучение от 1 мВт/см 2 через глаз будет эффективно увеличено до 100 мВт/см2, когда оно достигает сетчатки.
При термических ожогах глаза нарушается охлаждающая функция сосудов сетчатки глаза. В результате повреждающего воздействия термического фактора могут происходить кровоизлияния в стекловидное тело в следствии повреждения кровеносных сосудов.
Так как сетчатка может восстановиться от незначительных повреждений, основные ранения жёлтого пятна сетчатки может привести к временной или постоянной потере остроты зрения или к полной слепоте. Фотохимические ранения роговицы путем ультрафиолетового облучения может привести к photokeratoconjunctivitis (часто называют болезнью сварщиков или снежной слепотой). Это болезненные состояния могут длиться несколько дней с очень изнуряющими болями. Долгосрочное облучение может привести к формированию катаракты.
Общая продолжительность воздействия также влияет на травматизацию глаза. Например, если лазер видимых длин волн (400 до 700 нм), мощность луча которого составляет менее 1,0 МВт, а время экспозиции составляет менее 0,25 секунд (время за которое человек закроет глаз), никаких повреждений на сетчатке глаза не будет. Класс 1, 2А и 2-лазеров подпадают под эту категорию и, как правило, не могут навредить сетчатке. К сожалению, при прямом или отраженном попадании лазера класса 3A, 3B, или 4, и диффузных отражений лазеров выше 4 класса могут вызывать повреждения, прежде чем человек сможет рефлекторно закрыть глаза.
Для импульсных лазеров, длительности импульса также влияет на потенциальный вред для глаз. Импульсы менее чем на 1 мс при попадании на сетчатку может вызвать акустические переходные эффекты, что приводит к существенному ущербу и кровотечениям в дополнение к ожидаемым тепловым повреждениям. Многие импульсные лазеров в настоящее время имеют время импульса менее 1 пикосекунды.
Стандарт ANSI определяет максимально допустимую мощность воздействия лазера на глаз без каких либо последствий (под воздействием конкретных условий).
Травмы кожи от лазеров в первую очередь, делятся на две категории: тепловые травмы (ожоги) от острого воздействия мощных лазерных лучей и фотохимического индуцированного повреждения от хронического воздействия рассеянного ультрафиолетового лазерного излучения. Тепловой травмы могут возникнуть в результате прямого контакта с лучом или его зеркальным отражением. Эти травмы хоть и болезненны но, как правило, не являются серьезными и, обычно, легко предотвращаются при надлежащем контроле над лазерным лучом. Фотохимические повреждения могут произойти с течением времени от облучения прямого света, зеркальных отражений, или даже диффузного отражения. Эффект может быть незначительными но могут быть и серьезные ожоги, а длительное воздействие может способствовать формированию рака кожи. Хорошие защитные очки и одежда могут быть необходимы для защиты кожи и глаз. При работе с лазерами необходимо иметь очки, защищающие от лазерного излучения. Защитные очки нужны даже для лазера 15мВт, так как без них глаза сильно устают.
Степень защиты очков от лазерного излучение измеряется в OD (Optical Density). Оптическая плотность показывает, во сколько раз очки ослабляют свет. Единица означает «в 10 раз». Соответственно, «оптическая плотность 3» означает ослабление в 1000 раз, а 6 - в миллион. Правильная оптическая плотность для видимого лазера такова, чтобы после очков от прямого попадания лазера осталась мощность, соответствующая классу II (максимум где-то 1 мВт).
От красного и некоторых инфракрасных лазеров защищают отечественные очки марки ЗН-22 С3-С22. Они похожи на очки сварщика, но имеют стекла голубого цвета. В связи с широким применением лазерных источников излучения в научных исследованиях, промышленности, медицинский связи и др. возникает необходимость сохранения здоровья людей эксплуатирующих различные лазерные установки. 9
Лазер - источник когерентного излучения, то есть согласованного во времени и пространстве движения фотонов в виде выделенного луча. Характер воздействия на зрительный аппарат и степень поражающего действия лазера зависят от плотности энергии излучения, длины волны излучения (импульсное или непрерывное). Характер повреждения кожи зависит от цвета кожи, например пигментированная кожа значительно сильнее поглощает лазерное излучение, чем не пигментированная. Светлая кожа отражает до 40 % падающего на нее излучения. При действии лазерного излучения обнаружен ряд нежелательных изменений со стороны органов дыхания, пищеварения, сердечнососудистой и эндокринной систем. В некоторых случаях эти общие клинические симптомы носят довольно стойкий характер, являясь результатом влияния на нервную систему.
Охарактеризуем действие наиболее биологически опасных спектральных диапазонов лазерного облучения. В инфракрасной области энергия наиболее «коротких» волн (0,7-1,3 мкм) может проникать на сравнительно большую глубину в кожу и прозрачные среды глаза. Глубина проникновения зависит от длины волны падающего излучения. Участок высокой прозрачности на длинах волн от 0,75 до 1,3 мкм имеет максимум прозрачности в районе 1,1 мкм. На этой длине волны 20 % энергии, падающей на поверхностный слой кожи, проникает в кожу на глубину до 5 мм. При этом в сильно пигментированной коже глубина проникновения может быть еще больше. И, тем не менее, кожа человека достаточно хорошо противодействует инфракрасному излучению, так как она способна рассеивать тепло благодаря кровообращению и понижать температуру ткани вследствие испарения влаги с поверхности.
Но значительно труднее от инфракрасного облучения защитить глаза, в них тепло практически не рассеивается, и хрусталик, фокусирующий излучение на сетчатке, усиливает эффект биологического воздействия. Все это заставляет при работе с лазерами особое внимание обращать на защиту глаз. Роговая оболочка глаза прозрачна для излучения в интервале длин волн 0,75-1,3 мкм и становится практически непрозрачной только для длин волн более 2 мкм.
Степень теплового поражения роговицы зависит от поглощенной дозы облучения, причем травмируется главным образом поверхностный, тонкий слой. Если в интервале волн 1,2-1,7 мкм величина энергии облучения превышает минимальную дозу облучения, то может произойти полное разрушение защитного эпителиального слоя. Ясно, что подобное перерождение тканей в области, положенной непосредственно за зрачком, серьезно сказывается на состоянии органа зрения.
Следует иметь в виду, что радужная оболочка, отличающаяся высокой степенью пигментации, поглощает излучение практически всего инфракрасного диапазона. Особенно сильно подвержена она действию излучения длиной волны 0,8-1,3 мкм, поскольку излучение почти не задерживается роговицей и водянистой жидкостью передней камеры глаза.
Минимальной величиной плотности энергии облучения в интервале волн 0,8-1,1 мкм, способной вызвать поражение радужной оболочки, считают 4,2 Дж/см 2 . Одновременное поражение роговой и радужной оболочек всегда носит острый характер, а поэтому оно наиболее опасно. 10
Поглощение средами глаза энергии излучения в инфракрасной области, падающей на роговую оболочку, растет с увеличением длины волны. При длинах волн 1,4-1,9 мкм роговица и передняя камера глаза поглощают практически все падающее излучение, а при длинах волн выше 1,9 мкм роговица становится единственным поглотителем энергии излучения.
При оценке допустимых уровней лазерной энергии необходимо учитывать суммарный эффект, производимый на прозрачные среды глаза, сетчатку и сосудистую оболочку. Оценим действие лазерного излучения на сетчатую оболочку глаза.
Прогнозируя возможность опасности лазерного облучения, необходимо учитывать:
и т.д.................

Мощность . В первых лазерах с активным веществом из рубина энергия светового импульса была примерно 0,1 Дж. В настоящее время энергия излучения некоторых твердотельных лазеров достигает тысяч джоулей. При малом времени действия светового импульса можно получать огромные мощности. Так, неодимовый лазер генерирует импульсы длительностью 3·10 –12 с, и при энергии импульса 75 Дж мощность его достигает 2,5·10 13 Вт! (Для сравнения – мощность Красноярской ГЭС равна 6·10 9 Вт.) Мощность газовых лазеров значительно ниже (до 50 кВт), однако их преимущество в том, что их излучение происходит непрерывно, хотя среди газовых имеются и импульсные лазеры.

Угол расходимости лазерного пучка очень мал, и поэтому интенсивность светового потока почти не убывает с расстоянием. Импульсные лазеры могут создавать интенсивности света до 10 14 Вт/м 2 . Мощные лазерные системы могут давать интенсивности до 10 20 Вт/м 2 . Для сравнения заметим, что среднее значение интенсивности солнечного света вблизи земной поверхности всего лишь 10 3 Вт/м 2 . Следовательно, яркость даже относительно слабых лазеров в миллионы раз превышает яркость Солнца.

Когерентность . Согласованное протекание во времени и в пространстве нескольких волновых процессов, проявляющееся при их сложении. Колебания называют когерентными, если разность фаз между ними остается постоянной во времени. При сложении двух гармонических колебаний с одинаковой частотой, но с разными амплитудами А 1 и А 2 и разными фазами образуется гармоническое колебание той же частоты, амплитуда которого в зависимости от разности фаз может меняться в пределах от A 1 –А 2 до A 1 + A 2 , причем эта амплитуда в данной точке пространства остается постоянной. Световые волны, испускаемые нагретыми телами или при люминесценции, создаются при спонтанных переходах электронов между различными энергетическими уровнями в независимых друг от друга атомах. Каждый атом испускает электромагнитную волну в течение времени 10 –8 с, которое называется временем когерентности. За это время свет распространяется на расстояние 3 м. Это расстояние называют длиной когерентности, или длиной цуга. Волны, находящиеся за пределами длины цуга, будут уже некогерентными. Излучение, создаваемое множеством независимых друг от друга атомов, состоит из множества цугов, фазы которых хаотически изменяются в пределах от 0 до 2p. Для выделения когерентной части из общего некогерентного светового потока естественного света применяют специальные устройства (зеркала Френеля, бипризмы Френеля и др.), которые создают световые пучки очень малой интенсивности, тогда как лазерное излучение при всей его огромной интенсивности целиком когерентно.


Некогерентный световой пучок в принципе нельзя сфокусировать в пятно очень малых размеров, поскольку этому препятствует различие в фазах составляющих его цугов. Когерентное лазерное излучение можно сфокусировать в пятно диаметром, равным длине волны, этого излучения, что позволяет увеличивать и без того большую интенсивность лазерного пучка света.

Монохроматичность. Монохроматическим называют излучение со строго одинаковой длиной волны, однако его может создать только гармоническое колебание, происходящее с неизменной частотой и амплитудой в течение бесконечно долгого времени. Реальное излучение не может быть монохроматическим уже потому, что оно состоит из множества цугов, и практически монохроматическим считают излучение с узким спектральным интервалом, который можно приближенно характеризовать средней длиной волны. До появления лазеров излучение с определенной степенью монохроматичности удавалось получать с помощью призменных монохроматоров, выделяющих из сплошного спектра узкую полосу длин волн, однако мощность света в такой полосе очень мала. Лазерное излучение обладает высокой степенью монохроматичности. Ширина спектральных линий, создаваемых некоторыми лазерами, достигает 10 –7 нм.

Поляризация. Электромагнитное излучение в пределах одного цуга поляризовано, но поскольку световые пучки состоят из множества цугов, независимых друг от друга, то естественный свет неполяризован и для получения поляризованного света применяют специальные устройства – призмы Николя, поляроиды и т. п.. В отличие от естественного света лазерное излучение полностью поляризовано.

Направленность излучения. Важным свойством лазерного излучения является его строгая направленность, характеризуемая очень малой расходимостью светового луча, что является следствием высокой степени когерентности. Угол расходимости у многих лазеров доведен примерно до 10 –3 рад, что соответствует одной угловой минуте. Такая направленность, совершенно недостижимая в обычных источниках света, позволяет передавать световые сигналы на огромные расстояния при очень малом ослаблении их интенсивности, что крайне важно при использовании лазеров в системах передачи информации или вкосмосе.

Напряженность электрического поля. Еще одно свойство, отличающее лазерное излучение от обычного света, – высокая напряженность электрического поля в нем. Интенсивность потока электромагнитной энергии I – EH (формула Умова – Пойнтинга), где Е и Н – соответственно напряженности электрического и магнитного полей в электромагнитной волне. Отсюда можно подсчитать, что напряженность электрического поля в световой волне с интенсивностью 10 18 Вт/м 2 равна 3-10 10 В/м, что превышает напряженность поля внутри атома. Напряженность поля в световых волнах, создаваемых обычными источниками света, не превышает 10 4 В/м.

При падении на тело электромагнитная волна оказывает механическое давление на это тело, пропорциональное интенсивности потока энергии волны. Световое давление, создаваемое в летний день ярким солнечным светом, равно примерно 4 10 –6 Па (напомним, что атмосферное давление 10 5 Па). Для лазерного излучения величина светового давления достигает 10 12 Па. Такое давление позволяет обрабатывать (пробивать, резать отверстия и пр.) самые твердые материалы – алмаз и сверхтвердые сплавы.

Взаимодействие света с веществом (отражение, поглощение, дисперсия) обусловлено взаимодействием электрического поля световой волны с оптическими электронами вещества. Атомы диэлектриков в электрическом поле поляризуются. При небольшой напряженности дипольный момент единицы объема вещества (или вектор поляризации) пропорционален напряженности поля. Все оптические характеристики вещества, такие, как показатель преломления, показатель поглощения и другие, так или иначе связаны со степенью поляризации, которая определяется напряженностью электрического поля световой волны. Поскольку эта связь линейная, т.е. величина Р пропорциональна Е, что дает основание называть оптику, имеющую дело с излучением сравнительно небольших интенсивностей, линейной оптикой.

В лазерном излучении напряженность электрического поля волны сравнима с напряженностью поля в атомах и молекулах и может изменять их в ощутимых пределах. Это приводит к: тому, что диэлектрическая восприимчивость перестает быть постоянной величиной и становится некоторой функцией напряженности поля. Следовательно, зависимость вектора поляризации от напряженности поля уже не будет линейной функцией. Поэтому говорят о нелинейной поляризации среды и соответственно о нелинейной оптике, в которой диэлектрическая проницаемость вещества, показатель преломления, показатель поглощения и другие оптические величины будут уже не постоянными, а зависящими от интенсивности падающего света.


Close